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Abstract

Bose-Einstein condensation has been attained using Monte Carlo simulation on non-interacting ideal
bosons confined in a harmonic potential trap at near-zero temperature (~0K). A connection has been
established between the cyclic paths originated by the interchange of identical bosons and condensation.
At low temperatures, long cycles appear and condensation is obtained consequently. The simulated result
is in perfect agreement with the corresponding theoretical findings.
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1. Introduction

In 1924, Satyendranath Bose proposed a new statistic
for indistinguishable particles of integral spin;
subsequently, these particles became known as bosons
[1]. His discovery paved the way to discovering a new
state of matter at a temperature close to absolute zero (-
273.16°C), namely Bose-Einstein condensate [2]. This
state is formed by cooling a dilute gas of bosons to
temperatures near absolute zero. At such a cool
temperature, a large fraction of bosons occupies a
singular state, i.e., the ground state, defying Pauli's
exclusion principle. The observation of Bose-Einstein
condensate was produced in a gas of rubidium atoms
[3] using laser and magnetic traps that constitute a
potential trap of harmonic nature [4].

The statistical mechanical properties of a system can be
determined from its density matrix [5] p(x, %', B). This
density matrix is a function of coordinates x and x’ and
inverse temperature P that can be thought of as an
imaginary time. For N slices in 3, the convolution
property of the density matrices dictate that the density
matrix can be broken into N density matrices in the
domain. Each of them is a function of the coordinates
of the intermediate steps and temperature N times
greater and evaluated as a multiple integral over the
intermediate coordinates [6]. These coordinates form
the intermediate steps in the journey from x to x' that
constitute a path. Density matrices and partition
functions are represented as multiple integrals over the
paths.

Bosons are identical particles and for a system of N
bosons, the density matrix is comprised of totally
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symmetric eigenfunctions [6]. Hence, an alternative way
of the occurrence of an event, namely, the interchange of
the particles must be considered as well. The interchange
generates motion and its contribution decreases if the
temperature is high or the particles are spread out [5].

Since, the partition function of a system only involves a
diagonal density matrix, for a bosonic system, its path
must close on any permutation of its starting position.
All N! closures or cycles contribute to the partition
function [7].

The cycles form a convoluted diagonal density matrix,
which is comprised of many non-diagonal density
matrices. The lengths of the cycles depend on
temperature. The probability of finding longer cycles
increases with lowering temperature. At zero
temperature, the probability becomes independent of
cycle length [8].

All N particles can be sampled in one cycle or the other.
A closed path is constructed using the Lévy construction
method [9]. This path represents the spatial distribution
of the particles in the trap. The particles in a few long
cycles at low temperatures populate the single-particle
ground state [8].

In this article, the behavior of dilute Bose gas has been
investigated numerically in the presence of a three-
dimensional simple harmonic potential. Necessary
theoretical formulations for the simulation are provided
along with an appropriate discussion on this topic.



2. Theory

The theoretical framework is based on the density matrix
formalism of identical Bose particles. Diagonal density
matrices govern quantum statistical systems. The
formulation of density matrices in a harmonic potential
represents the statistical state of particles confined in a
harmonic trap [5].

The probability of finding a particle in a position x in the
ground state of a harmonic trap [10],

w(x) = (%)% exp (—%xz) 1

The diagonal density matrix for such a system appears as
a Gaussian [6],

x2
S
Where,

g? = h

2mwtanh (hTw ,8)

and

A mw

~ |2mh sinh(hwp)

The trace of the diagonal matrix p(x, x, f) creates the
partition function of this system [8],

1

2sinh (hTw [3) 3

28) = [ dx px) =

Bosons are identical particles and their wave functions
are symmetric, hence, permutations among the particles
must be considered. The density matrix can be
symmetrized for bosons by summing over permutations
P[11],

1
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A motion of a particle from one position to a permuted
position is reckoned in this case. This motion continues
until the particle comes back to its original position and a
cycle is complete. This motion creates a closed path
which can be generated by Lévy construction [9].

The Lévy construction yields a Gaussian by the
probability of xx [8],
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where,

Y; = coth(B —B') + coth(B" — By)

and,
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The Monte Carlo analysis was performed in a system of
N bosons whose density matrices were evaluated in time
slices B using Lévy path integral [8]. The system was
defined by randomly selecting a set of positions for
bosons using the gaussian variation in Eq. (2) at first.
Then a boson from this set was swapped with another
boson selected randomly from that set of positions. This
process was repeated until the boson returned to its
initial position. A path for the boson was thus created
with cycle length k using Eq. (4). The switching of two
bosons was confirmed by running a metropolis
algorithm.

For a cycle of length k in range N, the partition function
is given by [12]

N

1
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Here, Z,, (B) is the single-particle partition function for

3
cycle length k and is given by (1—e+kﬁ) and the

component Zy_j is related to the previous partition
functions by the above relation.

In a system of N particles,

N =Zka
k

if there are n;, cycles of length k [13].

The probability of having a particle in a cycle of length k
is
I Zk Zn-k 6
k NZy

The probability of a particle being in longer cycles varies
with temperature. The probability of finding a cycle of
length, say k, was shown in a scatter plot obtained from
the system of bosons along with a theoretical plotting of
Eq. (6). In high temperatures, the contribution from
permutations other than the identity permutation
contributes negligibly [5]. It is quite different in low
temperatures, where longer cycle lengths are more visible.
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3. Results

The path integral Monte Carlo theory was utilized in a
Monte Carlo algorithm written in python [14]. The
system under consideration has non-interacting ideal
bosons. These identical particles are kept at temperature
1K, which is then reduced gradually to 0.1K at 0.1K
intervals. The constants of the system such as m, ®, &, 7
have been taken to be unity.

Particles are found to cluster around the center of the
potential, and condensation occurs at near-zero
temperature (Fig. 3). The tendency to pursue a central
position is perceived in Fig.l1 in a three-dimensional
spatial frame as well as the probability of the particles to
be in a position in two-dimensional space in Fig.2. The
comparison of all bosons and bosons in cycles longer
than 10 with the ground state probability of harmonic
trap has been performed in Fig.3.
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Fig. 1: The position of 512 particles in a three-
dimensional spatial frame for three different
temperatures: (a) 0.8K, (b) 0.6K and (c) 0.1K
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Fig. 3: A visual comparison between the probability
distribution in one dimension of all 512 bosons (blue)
and bosons in a cycle length greater than 10 (green) with
the analytical curve of ground state (black dotted line)
obtained from Eq (1) for three different temperatures:(a)
0.8K, (b) 0.6K and (c) 0.1K

Cycle length distribution (N =512)

0.0030 1 —— calculated calculated calculated

simulated simulated simulated

T=0.1K T=0.6K T=0.8K

0.0025

ity g

= 0.0020 1

0.0015 -

0.0010

cycle probabil

0.0005 -

0.0000 +—+ T r T T 7
0 100 200 300 400 500

cycle length k

Fig. 4: Comparison between the probability of
appearances of cycles regarding their lengths at
temperatures 0.1K (blue triangle), 0.6K (orange star),
and 0.8K (green circle) for 512 bosons obtained by
Monte Carlo simulation (scatter) and theoretical
analysis (solid lines) obtained from Eq. (7).

The distribution of particles in 0.8K temperature is
spread out in space and end up in cycles of short length
with the highest cycle length being 40 in Fig.1 (a). As
the temperature is decreased, the particles get closer and
fall into longer cycles with the highest one being 159 for
0.6K [Fig.1 (b)] and 214 for 0.1K [Fig.1 (¢)].

The probability of the particles to be in any position on a
plane peaks at the center of that two-dimensional domain
with the reduction of temperature as shown in Fig.2. The
peak is around 0.07 at 0.8K, 0.17 at 0.6K, and 0.27 at
0.1K.

The comparison in Fig.3 shows that bosons in longer
cycles tend to show a similar trend with the analytical
probability of the ground state indicating those particles
all occupying that state. As the temperature is reduced,
the histogram generated by Monte Carlo fits the
analytical ground state probability perfectly [Fig.3 (¢)].

The probability of having a particle in cycle length k is
displayed both analytically and using Monte Carlo in
Fig.4. The result obtained by Monte Carlo simulation is
consistent with the analytical curve. Fig.4 shows that the

probability of being in longer cycle length increases with
reducing the temperature. At temperature 0.1K, the
probable length of the cycles goes as far as 512, while at
a higher temperature, a cycle this long has zero
probability of appearing. The probability goes to zero at
above 130 and 350 at 0.8K and 0.6K respectively.

4. Discussion

The crux of this article is to analyze the response of a
system of bosons with lowering temperature confined in
a three-dimensional isotropic harmonic trap. The results
exhibit a relation between cycle lengths and
condensation.

The Monte Carlo analysis of the probability of cycles
with respect to their lengths is in excellent agreement
with the analytical curve obtained from Eq. (6) (Fig.4).
Longer cycles have become prominent with the
reduction in temperature. In all temperatures, short
cycles are the most probable ones and the longest are the
least. The central values have probabilities that cluster
around a particular value regardless of the temperature.

A cycle is merely a path closing on itself. A long cycle
indicates that the density matrices have a tendency to
become off-diagonal. This is a consequence of the
uncertainty principle. The diagonal density matrix
provides the probability of finding a particle at its
coordinate. At high temperature with increased
uncertainty in momentum, the position of a particle
remains fairly certain, which accounts for the diagonality
of density matrices in coordinate space in most slices
rendering small cycles. On the contrary, reduction in
uncertainty in momentum at low temperatures results in
longer chains of non-diagonal density matrices resulting
in long cycles.

The analytical ground state probability curve obtained
from Eq. (1) is closely followed by the particles in cycles
of length greater than 10 (Fig.3). As temperature reduces,
the correspondence of the bosonic probability with the
analytical curve is improved. Concurrently, all the
bosons in the system, irrespective of their cycle lengths,
have probability outside the ground state. These too, fit
into the ground state with lowering temperature which
suggests that all the bosons in the system occupy the
ground state simultaneously.

It is also observed in Fig.2 that the probability of finding
the particles peaks around the center of the trap. This is
in accordance with the property of a harmonic potential.

To sum up, the reduction in temperature triggers non-
diagonality in density matrices which consequently
increases cycle lengths. The particles in long cycles tend
to cluster around the center and fall into the single-
particle ground state.
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5. Conclusion

The experimental discovery of Bose-Einstein
condensation in trapped potential has opened up new
possibilities for the exploration of quantum phenomena
in a qualitatively new regime. Bosons in a harmonic trap
have provided the setting for groundbreaking
experiments in atomic physics, where Bose-Einstein
condensation has actually been achieved and extended to
study interacting quantum systems from superfluid
gases, to interacting fermions and bosons in condensed
matter physics, and atomic gases. This article is focused
on the modeling of non-interacting ideal bosons in near-
zero temperatures. Monte Carlo method has successfully
been used to simulate the condensation of bosons in
temperature comparable to absolute zero and shows that
all the bosons condensate to ground state defying Pauli's
exclusion principle.

It can be concluded from the simulation that as identical
particles, the permutation among the bosons plays a key
role in condensation. The motion created by switching
two bosons in space forms closed paths or cycles in
imaginary time. These cycles appear in various lengths
depending on the temperature. Reduction in temperature
results in prolonged cycles and the particles residing on
these cycles fall into the single-particle ground state
attaining condensation.

This study can be extended to examine the case using
different potential traps. The effect of interaction
between particles at low temperatures can also be
explored. Besides, the effect of temperature reduction on
the particles that obey Pauli's exclusion principle,
namely, fermions might also be studied in order to
perceive the nature of their condensation.
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