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Abstract

Photogenerated charge transfer behavior from a p-type poly(3-hexylthiophene) (P3HT) donor material to
an n-type fullerene and non-fullerene acceptor materials have been studied in blend solution with the help
of photoluminescence (PL) quenching. The PL spectra were studied using two different excitation sources.
The small gap fullerene-ethyl nipecotate and phenyl-C61-butyric acid methyl ester (PCBM) are fullerene-
based and poly naphthalene-bithiophene (N2200) is a non-fullerene-based n-type acceptor material used in
this research work. Observation shows that the P3HT:N2200 blend with a weight ratio of 1:0.07 in solution
results in an efficient photogenerated charge transfer from P3HT to N2200.
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1. Introduction

The delocalized ?-electrons in ?-conjugated polymers
have their unique optical and electronic properties.
These unique physical properties of the polymer result
due to the rigid and co-planar conjugated chains in
their chemical structure[1-3]. Conjugated polymers
become promising materials in optoelectronic
applications due to these physical properties in
combination with lightweight, mechanical flexibility,
and cost-effective low-temperature processing of the
materials. Organic light emitting diodes (OLEDs),
thin-film transistors, organic solar cells (OSCs) and
many chemical sensors have been developed based on
these materials [4-7]. Photoluminescence (PL)
measurements of conducting polymers are used in
data-storage devices and conductance switching
applications [8], and to read the memory state for
storage devices [9]. PL quenching is used in
biomedical science in gas sensing and DNA/RNA
detection [10,11]. Moreover, different types of
molecular interactions such as molecular
rearrangements, ground-state complex formation,
excited state reactions, and energy transfer have been
studied with the help of PL quenching [12]. A highly
fluorescent conducting polymer  poly(3-
hexylthiophene) (P3HT) is used as the p-type electron
donor in bulk heterojunction (BHJ) based organic solar
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cell fabrication with a recorded power conversion
efficiency of up to 5% [13-15]. Pristine fullerenes and
their derivatives are used as promising acceptor
materials in organic electronic device fabrication
[16,17]. Among fullerene-based materials phenyl-C61-
butyric acid methyl ester (PCBM) is widely used as an
n-type acceptor in organic optoelectronic devices
[18,19]. Small gap fullerene-ethyl nipecotate is another
fullerene-based n-type acceptor material. In organic
electronics, nowadays, blends of polymer:non-
fullerene BHJ structures are also widely studied along
with the blend of polymer: fullerene. The advantages
of using a non-fullerene acceptor are its higher optical
absorption, tunable chemical structure and lower cost
compared with fullerene molecules [20]. As a non-
fullerene acceptor material, the electrical and optical
properties of poly naphthalene-bithiophene (N2200)
are studying in BHJ structures [21] and are widely
used as an n-type acceptor material for organic
electronic device fabrication [22,23].

The photoluminescence quenching or PL intensity
decay is the indication of photo-generated charge
transfer from donor to acceptor material [24]. Goutam
and his research team demonstrated that PL quenching
increases by the addition of multiwalled carbon
nanotube with P3HT polymer [25]. Recently Anefnaf
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et al. studied the PL measurments of P3HT:PCBM in
thin film and they reported that PL intensity quenches
with an increase in PCBM. This quenching suggests that
the transfer of photoinduced carriers from P3HT to
PCBM increases with an increase in the amount of
PCBM [26]. Similar studies have been shown by

Wahedd et al. where they reported that PL intensity
quenches as the amount of PCBM acceptor increases
into the blend of P3HT:PCBM [27]. Generally, non-
fullerene acceptors exhibit strong absorption in the
visible and NIR region. Yen et al. theoretically reported
that the energy levels of non-fullerene acceptors
properly matches with the donor energy levels for
achieving efficient charge separation [28]. Anderson and
his research team concluded that the blend of
P3HT:N2200 exhibits good photochemical stability that
can be used to analyze the effect of light soacking on
electronic properties [29]. The solar cell device
performance depends on dissociation, transport and
collection of charge carriers that lead to better or poor
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device efficiency. Therefore, photo-induced charge
carriers are very essential for an efficient photovoltaic
device. In this research work, PL quenching of P3HT:
Fullerene and P3HT: Non-fullerene blend solution were
studied to understand the charge transfer behavior from
a donor region to an acceptor region.

2. Experimental
2.1 Materials

Poly(3-hexylthiophene-2,5-diyl) (P3HT) with molecular
weight, MW~ 20,000-70,000 g/mol was purchased from
'Alpha Aesar', and small gap fullerene-ethyl nipecotate
(MW~ 2100 g/mol) and phenyl-C61-butyric acid methyl
ester (PCBM) (MW~ 910.88 g/mol) were purchased
from 'Sigma-Aldrich'. Polynaphthalene bithiophene
(N2200) polymer was used as received from Organic
Optoelectronic Materials Laboratory, Department of
Chemistry, Korea University. In this experiment, all the
polymers were used without any further modifications.
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Figure 1. Schematic representation of (a) P3HT polymer (b) N2200 polymer (c) Fullerene-EN (small gap fullerene-ethyl

nipecotate) and (d) PCBM molecule.
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2.2 Sample preparation

For UV-visible absorption and PL spectroscopy, 1 mg of
P3HT polymer was dissolved in a 4 ml chloroform
solvent. Then the solution was diluted by adding an
appropriate amount of solvent to make the concentration
0.025 mg/ml. Similarly, for PL measurements using Ar+
laser, separate solutions of P3HT, N2200, Fullerene-EN
and PCBM were prepared in chloroform solvent with a
concentration of 0.2 mg/ml. All the soltutiions were
diluted by the addition of appropriate amount of solvent.
The blend solutions of P3HT:Acceptors were prepared
using a micropipette with different P3HT-acceptor
weight ratios. The amount of P3HT in the ratio was the
same for all the solutions. Solutions of P3HT: N2200
with the weight ratios of 1:0, 1:0.5, 1:2, and 1:3 were
prepared for PL  measurement using a
spectrofluorophotometer.  While for the PL
measurements using Ar+ laser, the solutions of
P3HT:N2200 with the weight ratios of 1:0.00, 1:0.01,
1:0.02, 1:0.04, 1:0.05, 1:0.06, and 1:0.07 were used. In
similar experiments, the blends of P3HT: Fullerene-EN
with weight ratios of 1:0, 1:0.12, 1:0.25, 1:0.37, and
1:0.50, and the blends of P3HT: PCBM with weight
ratios of 1:0.00, 1:0.25, 1:0.31, 1:0.37, and 1:0.43 were
used.
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2.3 Experimental

A UV-VIS spectrophotometer (Shimadzu, UV-1800 PC)
was used to measure UV-visible absorption
spectroscopy. Photoluminescence (PL) measurements
were studied using spectrofluorophotometer (Shimadzu
RF- 5301 PC). A 514 nm (2.41 eV) line of an argon ion
(Ar+) laser was used to excite the blends. The laser
power was set to 21.1 mW. A Neutral-density (ND) filter
was used to control the intensity of the laser beam and a
beam splitter was used for reference intensity detection.
The PL signals were measured using a spectrograph
connected to a charged coupled device (CCD) (Newport
ORIEL 77400). A LineSpec Basic software was used to
save the experimental data. Laser power, experimental
geometry and acquisition time were kept same during
the measurements. The acquisition time was kept as
minimum as possible to avoid sample degradation. All
the measurements were done at the laboratory
environment. Therefore, the sample were exposed to air.
Jin et al. reported that during the measurements of few
hours' exposure to air, no chemical oxidation of P3HT or
PCBM occurred in the solutions [30]. Therefore, we
expect no PL intensity decay due to chemical
degradation of the sample in this short time.
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Figure 2. Experimental setup for photoluminescence measurements using Ar+ laser and CCD detector.
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3. Results and discussion

The photoluminescence (PL) spectroscopy of the blend
of P3HT with fullerene and non-fullerene acceptors with
different weight ratios of the acceptor materials were
studied by two different techniques (i) using
spectrofluorometer and (ii) using a 514 nm line of an
Ar+ laser as excitation sources. Optical absorption and
PL spectra of P3HT polymer in solution is shown in
figure 3 as a function of energy (eV). It has been
observed that the maximum absorbed energy for P3HT
polymer is 2.78 eV whereas the maximum PL intensity
is at 2.03 eV. The PL spectrum is Stokes shifted by
energy 0.75 eV. The laser line at 2.41 eV is also
observed in figure 3. Figure 4 shows the concentration
dependency of acceptor material on PL spectra of
P3HT:N2200, P3HT:Fullerene-EN and P3HT:PCBM
blend. It has been observed that the PL intensity
decreases or quenches gradually as the amount of
acceptor materials increases in the P3HT:N2200,
P3HT:Fullerene-EN and P3HT:PCBM blend solutions.

Uddin et al.,

Photoluminescence Quenching in Blends with Acceptors.

The results in figure 4(a) shows a PL peak at energy
around 2.2 eV for P3HT:N2200 blend solution with
maximum decrease in PL intensity by 40 a.u. (arbitrary
unit) for the change in acceptor material from 1:0.0 to
1:3.0 in the blend ratio. Here we do not observe any
vibronic structures. However, excitation with a laser line
shows structured electronic transitions. Figures 4(b),
4(c), and 4(d) display the appearance of two peaks at
different energies that are attributed to the transitions
from lower singlet excited state (S1) to different
vibronic states of ground states (S0). After excitation to
an upper vibronic state, the nuclear coordinates are not
in their equilibrium configuration for the new electronic
state, and hence radiationless relaxation between the
vibrational states occur. After relaxing to the lowest
vibrational state, n=0 of the excited state, the excitation
return to the different vibronic state of the ground state
by emitting
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Figure 3. PL and absorption spectra of P3HT polymer in solution.
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a photon [31]. Comparing the results shown in figure
4(b), (c) and (d), we find that PL intensity decreases
significantly wih increasing acceptor in P3HT:N2200
blend. We find that more amount of acceptor materials
were needed to decrease comparable amount of the PL
intensity for P3HT:PCBM and P3HT:Fullerine-EN.
These results indicates that poor charge transfer occurs
from P3HT polymer to PCBM and Fullerine-EN.

2004 P3HT:N2200
—=—1:0.0
——1:0.5
——1:2.0

1504 ——1:3.0

Photoluminescence Intensity (a.u.)

100
50
0 ol : i : 5 ; ;
1.8 2.0 22 24 2.6
Energy (eV)

(@)

100
P3HT:small gap fullerene-ethyl nipecotate
s —e—1:0.00 A )
= fag
& gl ——1012 ,f“ / i\
2 ——1:0.25 4
g ——1:037 / W
v ——1:0.50 | h
= 60 N(‘ e B
¥ | ifAd!
E 1 u.'..' ﬂ‘ 3 \\
el T, ) \
2 b 44 s W W
¢ 40 M‘ ” /AJ.Mf ‘
| ,|“'-.: A 1 3
£ M i e 4 |
= /;J‘ A ‘“"Jh;) pha y\‘f'\ 1?0¢, b“ofﬁ "-' \ a4
'\‘1( \’ M. cfsi
0 T T 4 T T T T T T T y T

1.7 1.8 1.9 20 21 22 23 24
Energy (eV)

(©

43

In organic photovoltaic devices, photo generated exciton
(bound electron-hole pair) in P3HT polymer diffuses
towards the P3HT:Acceptor interface. An efficient
electron transfer process results the dissociation of this
exciton into free electron and hole at the interface
leading to generation of photocurrent.
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Figure 4. PL emission spectra of (a) P3HT:N2200 with 450 nm excitation from using spectrofluorometer, (b)
P3HT:N2200, (c) P3HT: Fullerene-EN, and (d) P3HT:PCBM using 514 nm wavelength and 21.1 mW power Ar+ laser

excitation.
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The molecular orbital energy of P3HT and acceptor
material is a subject of great importance for the process
of efficient electron transfer. Ping-Tsung Huang et al.
experimentally reported that an efficient charge transfer
or the probability of charge transfer increases as the
amount of PCBM increases in the blend of P3HT:
PCBM solution which is confirmed by the quenching of
PL intensity [32]. Julia Yu Mayorova and co-workers
found that the PL intensity decay increased when
fullerene or its derivatives were mixed with conjugated
semiconducting polymers [33]. They also conclude that,
in polymer:fullerene blends, PL quenching allows
efficient charge separation resulting in better power
conversion efficiency of organic solar cells. A parameter
that describes the charge transfer or the energy transfer
behavior from donor to acceptor material is the PL
quenching parameter (q), defined as [32].

Iaonor—!ldonor:acceptor blend
= P x100% (1)

q

laonor

Uddin et al., Photoluminescence Quenching in Blends with Acceptors.

Where, gonor a0d Lgonor-acceptor blend @r€ the PL intensity of
donor and donor:acceptor blend solution. The maximum
value of 'q' refers to the efficient electron transfer
process from donor to acceptor material. Table 1 and
table 2 show the calculated quenching parameters, q,
from the experimental data of the blends. The blend of
P3HT:N2200 polymers with a weight ratio of 1:0.07
shows better quenching with the q value 85 %. Whereas,
the maximum q values for the blend of P3HT:Fullerene-
EN and P3HT:PCBM are 79.9 % and 31.2 %
respectively. In the case of P3HT:N2200 blend, the
generated exciton at the donor-acceptor interface
efficiently dissociated into free carrires. Facchetti et al.
reported that non-fullerene acceptor materials show
higher optical absorption and tunable chemical structure
compared to the fullerene molecules [34]. This tunability
of the LUMO and HOMO energy levels of the N2200
acceptor matches the LUMO and HOMO energy levels
of the P3HT donor. This explains the reason for the
efficient exciton dissociation or charge separation from
P3HT to N2200 [35-36].

Table 1. Photoluminescence quenching parameter (q) in blend with P3HT and at different weight ratio of N2200 polymer

measured by spectrofluorometer.

P3HT:N2200 1:0.0

1:0.5

1:2.0 1:3.0

q (%) 0.0

0.0

9.2 19.2

Table 2. Photoluminescence quenching parameter (q) in blends with P3HT and at different weight ratio of N2200,
Fullerene-EN and PCBM by Ar+ laser as source of excitation.

P3HT:N2200 1:0.0 1:0.01 1:0.02 1:0.04 1:0.05 1:0.06 1:0.07
q (%) 0.0 159 28.9 37.7 449 85.0 85.0
P3HT: Fullerene-EN  1:0.0 1:0.12 1:0.25 1:0.37 1:0.50
q (%) 0.0 36.6 533 68.3 79.9
P3HT:PCBM 1:0.0 1:0.25 1:0.31 1:0.37 1:0.43
q (%) 0.0 12.0 12.0 26.2 31.2
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Conclusion

We have shown that, the photolumenescence intensity
decreases with the increase of acceptor materials in the
P3HT:N2200, P3HT:Fullerene-EN, and P3HT:PCBM
blend solutions in order to investigate the charge transfer
behavior from a donor region to an acceptor region. The
experimental result concludes that the
photoluminescence quenching or PL intensity decay in
P3HT:N2200 solution is most efficient compared to the
blends with fullerene derivatives. Efficient photoinduced
electron transfer occurs from P3HT to N2200 polymer is
essential for bulk heterojunction (BHJ) photovoltaic
devices. Here, the charge transfer behavior becomes
more effective at a higher concentration solution of
N2200 or a shorter distance between P3HT and N2200.
Comparison of PCBM and small gap fullerene-ethyl
nipecotate BHJ structures, it has been observed that the
latter one shows better charge transfer behavior. Due to
this property of the material, we suggest that small gap
fullerene-ethyl nipecotate can be used as an n-type
acceptor material in fullerene based organic electronic
device fabrication.
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