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Abstract

In this study, first, we develop an algorithm for the automatic mesh generation employing the nth order
one-dimensional finite elements, preparing the elements data, and forming the element connectivity.
Secondly, we modify the techniques for evaluating the integrals needed to compute the components of the
element matrices and improve the assembly process to form the global matrices. Then, we develop an
interactive computer code incorporating all the algorithms and techniques for obtaining the solution of the
one-dimensional Bio-heat equation. The code requires only two basic inputs, the order and the total
number of the elements in addition to the endpoints of the domain [a, b] for generating the (h- and p-
version) meshes and accomplishing the other necessary computations. Since the Bio-heat equation is in the
form of a general second-order ordinary BVP, one can use the code conveniently to compute the solutions
of the other boundary value problems by providing the actual coefficients of the differential equations. We
extensively investigated the performance of the h- and p-methods by calculating the root-mean squares of
the errors of the solutions. Finally, for the clarity and reference, we present the solutions of the Bio-heat
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equation for the four (h- and p- versions) meshes with the corresponding errors.
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1. Introduction

Generally, the domain of the physical problem is
discretized either by using numerous elements of lower-
order, i.e. using the h-version mesh, or using a few
elements of higher-order, i.e. using the p-version mesh.
The h- method of FEM is being used commonly for its
simplicity and availability of all the relevant algorithms
so needed in the FEM solution procedure. It is well
known that the h-method generally requires huge
computer memory and more computing time. On the
other hand, the p-method utilizes p-version meshes that
means the method uses a few elements of higher-order
for the desired accuracy of the solution. Consequently,
this method requires less computer memory and
computing time. However, the p-method necessitates
faster algorithms mainly: (1) for automatic mesh
generation, (2) to prepare element data and connectivity,
(3) for evaluation of integrals to form the element
matrices, and (4) to assemble the global matrices for
obtaining the solution. It is needless to mention that any
development on such stages of the p-method of the FEM
solution procedure is known as the fundamental
development and such developments are indeed highly
anticipated. We wish to note here that the mesh
generation for the p-method is the prime task, and this
initiates avenues of developments for the other stages of
the FEM solution procedure.

Copyright © 2019 SUST

Since the automatic mesh generation employing the
higher-order elements is much more complicated than
the mesh generation employing the linear elements.
Hence, almost all the commercial software uses only the
linear and quadratic elements for generating the h-
version and p-version meshes. In practical situations, to
solve the real problems, the meshes are generated and
refined repeatedly before the final mesh, which also
consists of many linecar elements [1,4]. So, the
computational effort and the computing time increases
eventually for obtaining the desired accuracy of the
solutions. Therefore, it is an important task to make a
proper balance between the accuracy and efficiency of
calculations [2- 4]. Thus, it is now desirable to develop
faster algorithms for the p-method of the FEM. In this
instance, the development of a general algorithm for
generating the p-version meshes is the leading task for
developing algorithms of the p-method of the FEM.

Considering the above needs mentioned for the
developments, the objectives of the study are to (1)
develop a suitable algorithm for automatic mesh
generation employing a few numbers of the nth order (n
=1, 2, 3, 4, ...) elements; compute the elements data;
and to form the element connectivity, (2) present
formulae for computing the components of the element
matrices, and (3) improve the assembly process of the
element matrices to form the global matrices. As an
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integral part and also for the completeness of the
development, the study intends further to develop an
interactive computer code assimilating all the anticipated
developed algorithms, formulae, and techniques for
solving the one-dimensional boundary value problems.

Many researchers studied the one-dimensional Bio-heat
equation and presented numerical and analytical
solutions. The necessities and importance so charted to
study the said problem are: (a) different therapeutic
treatment requires precise monitoring of bio-heat
transfer of human tissues for preserving the healthy
tissues near the skin surface from burning or freezing
during therapeutic application [5], (b) bioheat transfer is
the study of heat transfer in the biological system [5-6],
(c) the thermal therapies are based on the heat transfer in
biological tissues and the purpose of therapeutic
application on the biological body is either raising or
lowering the temperature at various points in human
tissue [5,7], and (d) the heat transfer is a very important
process in living tissues to maintain an almost constant
temperature. They have also mentioned clearly that the
accurate evaluation of the thermal response of the
biological tissues during therapeutic applications is very
tough due to the complex mechanisms that maintain the
body temperatures such as blood flow and metabolic
heat generation. So, an important task is to provide
useful data on the thermal analysis of biological tissues
to the therapist. Furthermore, complex heating is also
encountered in thermal diagnostics [8], thermal control
analysis [9-12], thermal parameter estimation [12-17],
and in burn injury evaluation [18-22].

The finite element formulation of the one-dimensional
Bio-heat equation, the FE models employing only the
linear elements, and the respective solutions are given in
[5]. Due to [5-22], considering the importance and
necessities for calculating the accurate results of the bio-
heat equation, we think that the p-method will be the
appropriate FEM solution procedure. On the other hand,
the one-dimensional bio-heat equation is in the form of a
more general second-order one-dimensional boundary
value problem encountered in many areas of science and
engineering. Hence, we are motivated to present the
FEM formulation of the Bio-heat equation in the general
form so that one can use the formulation for the other
second-order one-dimensional boundary value problems.
Also, on the line of the development, we intended to
develop an interactive computer code in MATLAB
based on the general formulation incorporating the
algorithms, formulae, and techniques (as expected to
develop for the p-method) for obtaining the numerical
solutions of the Bio-heat equation with minimum inputs.

2. Bio-heat (Field) Equation

We wish to present here briefly the well-known one-
dimensional Bio-heat equation governed by a second-

order ordinary differential equation for ready reference.

The Pennes bioheat transfer equation [5, 13], popularly
known as the Bio-heat equation is expressed as

aT d2T
pc o=k d)?z(X) + wpPpCp [Ty — To(D] + Quy
0<x<lL (1)

For steady state problem, temperature T is

. . .2
independent of time (t). So, putting a_: =0,

C=wpppC, and q=CT,+Q,, into the

governing Eq. (1), the new equation, i.e., the

steady state Bio-heat equation becomes
d dTy(x)
~(KR2) + @ —g =0 @
With boundary conditions:
dTo (x)
At x=0, —k ;x" = ho[Tr —To(x)]  (2a)
At x=L,To(x) =T, (2b)

It is clear in Eqs. (2a) —(2b) that the suppressible
boundary condition is at x = 0 and the essential
boundary condition at x = L.

The constants C and g are assumed constants
defined by symbols w,, pp, Cp, T, and Q,,, and
hence their values and units are known.

All the constants used in Egs. (1) -(2) and (2a) -(2b) are
relevant with the tissue properties, their symbols
together with units and values are found in [5,13]. For
the purpose of computation these constants are now
summarized in Table-1.

2.1 Finite element formulation of the Bio-heat equation
We present here the Finite Element equations in a
general form so that both the h- and p-methods can be
applied for obtaining the numerical solutions. For the
domain [0,L] , and the weight functions W, the weak
form of Eq. (2) is

L, dTe(x) dw dTe(x) ., 1%
fOk dx de_[k dx W]0+

fOL cTo(x). W dx — fOL q.Wdx =0 (3)

Discretizing the domain using the finite number of
elements where each element has nde number of nodes
and nde number of shape functions of order n (=nde-1).
If we write the nodal value of the function To(%x) at node
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Table- 1
Constants are used in the Bio-heat equation
Tissue properties Symbol Value Unit
Thermal conductivity of tissue k 0.5 Wm~1°c?!
Heat convection coefficient between skin & surrounding hg 10 Wm~2°c1
Force convection co-efficient he 100 Wm~2°C-1
Surrounding air temperature T 25 °C
The arterial temperature T, 37 °C
Body core temperature T, 37 °C
Metabolic heat generation Qn 33800 Wwm™3
Specific heat of tissue c 4200 Jkg=tec!
Specific heat of blood Cp 4200 Jkg=te°c!
Density of tissue p 1000 kgm™3
Density of blood P 1000 kgm™3
The Blood perfusion Wy 0.0005 ml/s/ml
Calculated constant (¢, p,®p) C 2100
Calculated constant (CT, + Q) q 111500
j G=1,..,nde) by T; and replace the weight fori,j =1,2,..,nde (5a)
function W (for Galerkin weighted residual 1 _
technique) by shape functions N; (i = 1, ...,nde), Fi = f—l 24 N; d§,fori=12,..,nde (5b)

then for an element [e], the trail solution is given
by, To(x) = X345 T;N;.

Then, the Eq. (3) reduces to,
dN; dN;
e, {f[e(k —L+ cNiNpdx} =

dTo (x)
f[e]q.zvi dx — [—kT.Ni I, @

Which is now can be written as in the matrix form:
[K{T}={F}+{B}

Where the components of eclement matrices
[K],{F},{B}) are defined by,
le
f[e]( k— ] ~+ cN;Nj)dx
fori,j =1,2,...,nde (4a)

Fi = Jj,q-Nidx fori =12,..,nde  (4b)
B, = [~k 2%, N] ,i=12,..,nde (4c)

If we transform the element [e] of global x-space
to element [-1, 1] of local - space by using the
linear shape functions, then Eqs. (4a)- (4c) reduce
to:

le de

i ~cNN))dé,

1.2
Kijz _1(71(

dTo(x)

™ nde (5¢)

B =[-k2N| ij=12,.,

[e]

It is clear from Eqgs.(5a)- (5¢) that the order of
symmetric element stiffness matrix [K] is nde X
nde where as other element matrices {F} and {B}
are of order nde X 1. So, one has to evaluate

nde (nde+1) __ nde(nde+5)
{—2 } + nde + nde = —

for each of the elements of the mesh.

integrals

The problem has a suppressible boundary
condition atx = 0. So, for element [e] = [1] we
have to compute the value of B; at node i =1
that is B; and for the other nodes of the elements
the value of B; = 0,i = 2,3, .....,nde. Using the
values of the constants from the table we easily
compute, B; = 250.

nde(nde+3)

2
integrals given in Eqs. (5a)- (5b) to form the
element matrices. Furthermore, for each integral,
the nodal coordinates are required to determine 1. The
connectivity of the local and global nodes is required to
form the global matrices. To meet such requirements,
suitable and faster algorithm for mesh generation is
needed.

So, now we are required to compute
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3. Algorithm for Mesh Generation of One-
Dimensional Domain

For known LB (initial point of the domain), UB (terminal
point of the domain), the total number elements (ELM)
and the order of elements (OD), we present an algorithm
in the following for automatic mesh generation, to
prepare the element data, and forming their connectivity.

Algorithm:
Step-1: Set NDE=OD+1,
TOTALNODE=ELM*OD+1 and CORD [1]=LB
Step 2: Set INCR=(UB-LB) / TOTALNODE
Step 3: for J=2 to TOTALNODE
compute CORD[J]=LB+(J-1)*INCR
Step 4: Set FLAG=0
Step 5: for I=1 to ELM
Step 6:  for J=1 to NDE

REL (IJ)=FLAG+J

FLAG=FLAG+OD

Repeat step 6

Repeat step 5

Step 7: Print REL and CORD array and Draw the mesh
of the domain
Note that the above algorithm is a general one, it will
generate the h- and p-version meshes depending on the
values of OD.

3.1 The output of the algorithm and the workflow of
the code

We developed an interactive computer code "function
oneDimBioheat" incorporating (1) the above mesh
generation algorithm, (2) the formulae to evaluate all the
integrals (in Egs. (5a) -(5b)) in order to form the element
matrices, (3) the algorithm to assembles the global
matrices, and (4) the technique to solve the global system
of equations. We wish to include here only the computer
code instead of including the assembly algorithm,
integration formulae, and solution techniques.

The fragment of the code based on the (mesh generation)
algorithm generates the mesh and provides two matrices,
namely REL and CORD. The matrix REL represents the
connectivity of the local and global nodes, and the matrix
CORD presents all the nodal coordinates of the mesh.
The remaining fragments of the code take inputs from
REL and CORD, then computes components of element
matrices, assembles global matrices, and solutions of the
Bio-heat equation.

4. Finite Element models

To test the accuracy and efficiency of the higher-order
elements, we have considered many FE models by
discretizing the domain with elements of different orders.
A few of the meshes so generated by the code are shown
below:

L ®
1 2

Figure 1: Problem domain, 1 linear element.
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(a) FE Model-1: 5 linear elements mesh
(11
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1 2 3 4 5 6

(b) FE Model-2: one 5th order element mesh
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(c) FE Model-3: 10 linear elements mesh
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(d) FE Model-4: one 10th order element mesh

Figure 2: Domain discretization with (a) five linear
elements, (b) one fifth order element, (c) ten linear
elements, and (d) one tenth order element.

5.1 Numerical solution of the Bio-heat equation

We mention here that the finite element solution of the
Bio-heat equation, Eq. (2) were computed in [5] by using
(manually created) h-version meshes. The same
equation and the domain are under our consideration for
easy comparison of the computed results. To obtain
numerical solutions, we used several h- and p-version
(code generated) meshes. We computed the percentage
of errors for function nodal values to justify the accuracy
of the solutions. As only the 4 (four) FE models have
shown above, we computed the results and the
corresponding percentage of errors. We, for the clear
understanding, have summarized them in Tables-(2.1-
3.1) and Figs.-(3-4).
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Table- 2.1

Comparison of solutions computed by using the FE Model-1 and FE model-2 (both the models have 6 nodes).

FE Model-1(with 5 linear elements) FE Model-2(with one 5™ order element)
Nodes
App. Solution T; Percentage of error App. Solution T; Percentage of error
0 | 43.255588002289123 | 0.14650387486121 |43.1923099376774 | 0.000000793166909
0.006 | 44.739782722485828 | 0.15021985586154 [44.6730827167937 | 0.000911570752205
0.012 | 44.927973285562977 | 0.14388211463465 [44.8632132418464 | 0.000467200712201
0.018 | 43.849349692687227 | 0.12694004093886 [43.7935278828969 | 0.000525178979513
0.024 | 41.336607997158943 | 0.08888370749102 (41.3003224413226 | 0.001025004168894
0.03 | 37.000000000000000 0 37 | 0.000000000000000
Erms=12x10"" Epms =63 %107
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Fig.-3: The analytical and numerical solutions for

both FE Model-1 and FE model-2

Table-3.1
Comparison of solutions computed by using the FE Model-3 and FE model-4 (both the models have 11 nodes).
Nodes FE Model-3(with 10 linear elements) FE Model-3(with one 10" order element)
App. Solution T; Percentage of error App. Solution T; | Percentage of error
0 43.20806950875790 0.0364877771422 43.19230959509 0.000000000000921
0.003 44.11942774991822 0.0372889529922 44.10298220959 0.000000000039005
0.006 44.68934930892789 0.0373244158626 44.67267549378 0.000000000073499
0.009 44.93951380230151 0.0367785606093 44.92299177248 0.000000000142748
0.012 44.87943739975789 0.0356962413147 44.86342284413 0.000000000123932
0.015 44.50683481598335 0.0339949059752 44.49170990104 0.000000000018749
0.018 43.80753237917890 0.0314531141847 43.79375787843 0.000000000160576
0.021 42.75492886954860 0.0276720433624 42.74310098017 0.000000000145539
0.024 41.30898361821451 0.0219964280158 41.29989911560 0.000000000063450
0.027 39.41469337419502 0.0133627374987 39.40942719590 0.000000000029821
0.03 37 0.0000000000000 37 0.000000000000000
Erms =3.1X 1072 Erms=9.3x 10"
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FE Model-3

FE model-4
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Fig.-4: The analytical and numerical solutions for both FE Model-3 and FE model-4

The analytic solution of the problem

To(x) =
T, +—2_ 4
wpPHCD
(T —1,——9m )(\/Zcosh(ﬂx)+h—°sinh(\/ﬁx))
¢ fa WpPHCH k
\/Zcosh(\/ZL)+h70 sinh(\/ZL)
hTO(T f—Ta—wap’:Cb)sinh(\/Z(L—x))
\/Zcosh(\/ZL)+h7° sinh(\/ZL)

5.2 Performance of h- and p- methods

Numerical solutions for the 4 (four) FE models are
shown in Tables-(2.1-3.1). Theroot-mean square
error, E,¢ 1s calculated to inspect the
performances of the higher-order elements. In
Table-2.1, for the FE model-1, the computed
E,ms= 1.2 X 107! whereas the computed E,.,; =
6.3x1075 for the FE model-2. Which
substantiates that we can reduce error 1.9 X 103
times by using one 5 order element instead of
using 5 linear elements. Similarly, in Table-3.1 we
have E,,=3.1x10"%for the FE model-3
whereas E,,,s = 9.3 X 10711 is found for the FE
model-4. Which also substantiates that the
accuracy of the solution always higher in case of
using the higher-order elements. We have
extensively investigated the performance of
higher-order elements that is for the p-method
considering the h- and p-version meshes. Such
results, for clarity and reference are summarized in
Table-4.

Table- 4

The requirement of elements for obtaining the solutions
correct up to 11 decimal places in different models.

Order of | No. of elements Erms

elements in FE model
101 1 9.3 x 10711
gth 2 1.8 x 10!
gth 3 7.2 X 10712
7t 4 5.8 x 10711
6h 7 49 x 10711
5t 15 7.5x 10711
4t 40 7.0 x 10711
3w 200 6.0 x 10711
2nd 500 4.0 x 107°
I 5000 1.7 x 1077

Remarks: The computed £,,,,;, in Table-4, clearly shows
that the p-method is always efficient in view of the
accuracy and efficiency of calculations. Since for
example, the p-version mesh consisting of one 10th order
(or two 9th order or 200 3rd order) element requires
significantly less computer memory and computational
effort than that required for the h-version mesh
consisting of 5000 linear elements.

6. Conclusions

We have developed an algorithm for automatic mesh
generation employing the n-th order one-dimensional
finite elements, preparing the elements data, and forming
the element connectivity. We have also improved the
integration formulae so needed to compute the
components of the element matrices and the algorithm to
assemble the global matrices. Then, on the line of the
development and for the completeness of the objectives,
we have developed an interactive (MATLAB) computer
code incorporating all the algorithms, formulae, and
techniques so needed for the h-and p-methods of the
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FEM solution procedure. The workflow of the code is as:
(1) it prompts to take the input; the number of elements
(NEL); and the order of the elements (OD), (2) it
generates the mesh; provides elements data; and the
element connectivity, (3) it computes the element
matrices, and (4) it assembles the global matrices and
computes the solution.

We feel it necessary to mention that the one- dimensional
Bio-heat equation is in the general form of the one-
dimensional second-order boundary value problems.
Many researchers studied the Bio-heat equation and
presented analytical/numerical solutions for different
situations. They had stressed on the computations of the
solutions of the problem with the higher accuracy. So,
we have considered the Bio-heat equation as the typical
problem for applying the h- and p-methods of the FEM
solution procedure. Further, our motive for considering
the Bio-heat equation was: (1) the computer code for its
solution will be applicable for the other BVPs, (2) the
computed results can be easily compared with the
solutions available in the literature, and (3) since the
length of the domain is practically small; the p-version
mesh will be the suitable one to model the problem
domain. Thus, we have developed the code "function
oneDimBioheat" which is a complete one for obtaining
the solutions of the said problem by the h- and p-
methods. This code easily may be used for computing
the solutions of the other BVPs by providing the domain
and the value of the actual coefficients of the differential
equations.

We have considered the (manually created h-version) FE
models of [5] and generated the same FE models and
then computed the corresponding solutions using the
code. We have found the full agreement of the meshes
and the solutions. Then, by using the code, we have
generated other (h- and p-versions) meshes; obtained
solutions, and then compared the computed solutions
with the existing analytical/ numerical solutions. Such,
computed results (for the four FE models) are presented
in tabular form and displayed graphically. Further, we
have extensively investigated the performances of the
higher-order elements in terms of the solution accuracy
and efficiency of calculations. In several test cases, by
calculating the root-mean squares of the errors, we have
substantiated that a vast number of lower-order elements
are required in the mesh for the h-method than that of a
p-method for obtaining the same accuracy. We are
impressed to note here that the use of the higher-order
elements drastically reduces the number of elements of
the mesh. Consequently, the p-method requires less
computer memory and computational effort. This fact is
illustrated in Table-4. The agreement of the numerical
and analytical solutions ensures the correctness of the
mesh generation algorithm, computation of element
matrices, and their assembly. We believe that the main
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contribution of this study, the algorithm for the automatic
(h- and p-versions) mesh generation, will open avenues
for developing suitable algorithms to generate the two-
and three- dimensional meshes. We anticipate that the
ultimate contribution of the study, the computer code,
will find immense applications for solving one-
dimensional field problems encountered in many areas of
science and engineering.

7. Computer Code

function oneDimBioheat

format long

syms z

%information for domain

a=0; %lower limit

b=0.03; %upper limit

%Information for elements
elm=input('Number Of Elements:');
order=input('Order Of Elements:");
I=(b-a)/elm; %length of element
%node numbers

nde=order+1;
totalnode=elm*order+1;

%nodal corrdinates
x=linspace(0,0.03,totalnode);
%genarating shape function
N=oneDShapeFunction(order);
dN=diff(N);

%problem constants (used in FEM formulation)
k=0.5;

¢=2100;

q=111500;

% Relations between Global and local nodes
%Domain discritization

flag=0;

for i=1:elm

for j=1:nde

rel(i,j)=flag+j;

end

flag=flag+order;

end

%initiazing the matrices with 0
gk=zeros(totalnode,totalnode)';
gf=zeros(1,totalnode);
gb=zeros(1,totalnode);

%impose suppressible boundary condition
gb(1,1)=250;

%Calaculation K,F, element matrices
m=1;

for e=1:elm

for i=1:nde
fe(i)=int(N(i)*q*1/2,'z',-1,1);

for j=1:nde
ke(i,j)=int(k*dN(1)*dN(G)*2/1+c*N({1)*N(G)*1/2,'2' - 1,1);
end
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end

%assemble K,F matrices one by one element
p=L

for i=1:nde

n=1;

gfi(rel(m,p))=gf(rel(m,p))+fe(i);

for j=1:nde
gk(rel(m,p),rel(m,n))=gk(rel(m,p),rel(m,n))+
ke(i,j);

n=n+1;

end

p=pt+l;

end

m=m+1;

end

F=gf+gb;

%impose essential at last node of the domain
Te=input('Essential b.c (temparature at x=L):");
newk=gk(1:totalnode-1,1:totalnode-1);
newf=(F(l:totalnode-1))'-gk(l:totalnode-
1,totalnode)*Tc;

newk(1,1)=newk(1,1)+10;

%to solve the global system of equations
t=inv(newk)*newf;
t(totalnode)=Tc;

%displaying the result

disp(x");

disp(‘app:");

disp(t);

disp(‘exact:");

exct=exact(x');

disp(exct');

%Error calculation

for i=1:totalnode
err(i)=100*abs(exct(i)-t(i)")/abs(exct(i));
end

disp(‘Error:");

for i=1:totalnode
fprintf("%0.15f\n",err(i));

end

% to display the result in figure
figure;

scatter(x,t,100,t,'filled');
colormap(jet(n));

colorbar;

hold on

%curve of exact solution
xx=linspace(0,0.03,100);
yy=exact(xx");

plot(xx,yy);

xlabel('skin to body depth(cm)');
ylabel('temparature(degree cel.)");
s=0;

nn=size(err,2);

for i=1:nn

s=s+(err(1,1))"2;

end

disp('RMS error:'");

disp(double(sqrt(s/nn)));

end

function [s]=oneDShapeFunction(order)

syms z

nde=order+1;

t=2/order;

for i=1:nde

x(1)=-1+(i-1)*t;

end

for i=1:nde

N=1;

for j=1:nde

if i==j

continue;

end

N=N*(z-x(j))/(x(1)-x(j));

end

s(i)=N;

end

end

function [tt]=exact(xx)

[m n]=size(xx);

syms x

format long

k=0.5;

h0=10;

hf=100;

tf=25;

ta=37;

tc=37,

qm=33800;

c=4200;

cb=4200;

p=1000;

pb=1000;

wb=0.0005;

1=0.03;
t=inline((ta+(qm/(wb*pb*cb)))+((tc-ta-
(qm/(wb*pb*cb)))*
(sqrt(wb*pb*cb/k)*cosh(sqrt(wb*pb*cb/k)*x)+(h0/k)*
sinh(sqrt(wb*pb*cb/k)*x))/(sqrt(wb*pb*cb/k)*
cosh(sqrt(wb*pb*cb/k)*1)+(h0/k)*sinh(sqrt(wb*pb*cb/k
)+

( (C (Ch o/ k) * (t f -t a -
(qm/(wb*pb*cb))))*(sinh(sqrt(wb*pb*cb/k)*(1-
x))/(sqrt(wb*pb*cb/k)*cosh(sqrt(wb*pb*cb/k)*1)+(h0/k)
k

sinh(sqrt(wb*pb*cb/k)*1)))));
for i=1:m

tt(i)=t(xx(1));

end

end
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