Epimorphic Image of P-Ideals of P-Algebras

(Submitted: 20.01.2020; Accepted: 07.06.2020)

C. Nag, S.N. Begum and M.R. Talukder^{*}

Department of Mathematics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

*Corresponding Author's Email: r.talukder-mat@sust.edu

Abstract

In this paper, we study p-ideals of a p-algebra. We prove that epimorphic image of a p-ideal is a p-ideal. Our main result is that the lattice of p-ideals of a p-algebra \mathbf{L} is isomorphic to the lattice of ideals of the Boolean algebra formed by the closed elements of \mathbf{L} .

Keywords: Lattices, 0-distributive lattice, pseudocomplemented lattice, ideal, filter, homomorphisms.

1. Introduction

An algebra $\mathbf{L} = \langle L; \land, \lor, *, 0, 1 \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ is called a *p*-algebra if

- (i) $\mathbf{L} = \langle L; \land, \lor, 0, 1 \rangle$ is a bounded lattice, and
- (ii) for all $a \in L$, $x \le a^*$ if and only if

 $x \wedge a = 0.$

The bounded lattice $\mathbf{L} = \langle L; \Lambda, \vee, 0, 1 \rangle$ is called the *underlying lattice* of **L** and the element a^* is called the *pseudocomplement* of *a*. We refer the reader to [4, 5, 6, 7] for p-algebras.

The following well known identities (see [1, 2, 3, 4, 7]) are used throughout this paper.

- (1) $a \leq b$ implies $b^* \leq a^*$.
- (2) $a \leq a^{**}$.
- (3) $a^* = a^{***}$.
- $(4) (a \lor b)^* = a^* \land b^*.$
- $(5) (a \wedge b)^{**} = a^{**} \wedge b^{**}.$
- (6) $a \wedge (a \wedge b)^* = a \wedge b^*$.

Let **L** and **M** be two lattices. A mapping $f: L \rightarrow M$ is called a *lattice homomorphism* if for all $x, y \in L$,

$$f(x \land y) = f(x) \land f(y)$$

and

$$f(x \lor y) = f(x) \lor f(y).$$

Let **L** and **M** be two p-algebras. A lattice homomorphism $f: \mathbf{L} \to \mathbf{M}$ is called a *homomor phism* if for all $x \in L$,

$$f(x^*) = f(x)^*$$
, $f(0) = 0$ and $f(1) = 1$.

A onto (lattice) homomorphism $f: \mathbf{L} \to \mathbf{M}$ is called an (*lattice*) *epimorphism*. For, *-homomorphism of semilattices we refer the reader to Blyth [1].

In section 2, we discuss epimorphic image of an ideal of a lattice. We show that lattice epimorphic image of an ideal is an ideal. We also show that lattice epimorphism preserves the operation \land and \lor in the lattice of ideals.

In Section 3, we discuss epimorphic image of p- ideals of a p-algebra. We show that epimorphic image of a p-ideal is a p-ideal. We also show that epimorphism preserves the operation \land and \lor in the lattice of p-ideals.

In Section 4, we define an induced epimorphism. We show that if $f: \mathbf{L} \to \mathbf{M}$ is an epimorphism, then there is an epimorphism from $I^*(\mathbf{L})$ to $I^*(\mathbf{M})$ if and only if ker *f* is a principal ideal, and the p-algebra $I_f^*(L)$ of p-ideals containing ker *f* is isomorphic to $I_f^*(M)$. We also show that for any p-algebra $\mathbf{L}, I^*(\mathbf{L}) \cong I(S(\mathbf{L}))$.

2. Epimorphic Image of an Ideal

Let **L** be a p-algebra. A non-empty subset I of L is called an *ideal* of **L** if

- (i) $a \in I$ and $b \in L$ with $b \leq a$ implies $b \in I$
- (ii) $a, b \in I$ implies $a \lor b \in I$.

The set of all ideals of **L** is denoted by I(L). Not every homomorphic image of an ideal is an ideal.

Now we have the following result.

Lemma 2.1. Lattice epimorphic image of an ideal is an ideal.

Proof. Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism and let *I* be an ideal of **L**. Let $x \in f(I)$ and $y \in M$ such that $y \leq x$. Then there is $i \in I$ and $t \in L$ such that x = f(i) and y = f(t). This implies

$$y = y \wedge x = f(t) \wedge f(i) = f(t \wedge i) \in f(I).$$

Now let $f(x), f(y) \in f(I)$. Then

$$f(x) \lor (y) = f(x \lor y) \in f(I).$$

Hence f(I) is an ideal of **M**.

Now we have the following result.

Lemma 2.2. Let $f: \mathbf{L} \to \mathbf{M}$ be a lattice epimorphism. Then for any $I, J \in I(L)$,

(a)
$$f(I \cap J) = f(I) \cap f(J);$$

(b)
$$f(I \lor J) = f(I) \lor f(J)$$
.

Proof. (a) Let $x \in f(I) \cap f(J)$. Then x = f(i) = f(j)for some $i \in I$ and $j \in J$. Thus $x = f(i) \wedge f(j) = f(i \wedge j)$. *j*). So $x \in f(I \cap J)$. Hence $f(I) \cap f(J) \subseteq f(I \cap J)$. The reverse inclusion is obvious.

(b) Let $x \in f(I \lor J)$. Then x = f(y) where $y \in I \lor J$. This implies $y \le i \lor j$ for some $i \in I$ and $j \in J$. Hence

$$x = f(y) \le f(i \lor j) = f(i) \lor f(j)$$

for some $i \in I$ and $j \in J$. This implies $x \in f(I) \lor f(J)$. Thus $f(I \lor J) \subseteq f(I) \lor f(J)$. The reverse inclusion is trivial.

3. Epimorphic Image of a P-Ideal

An ideal *I* of **L** is called a *p*-ideal of **L** if

$$x \in I \Rightarrow x^{**} \in I.$$

The set of all p-ideals of a lattice **L** is denoted by $I^*(L)$. Not every homomorphic image of a p-ideal is an ideal.

Now we have the following result.

Theorem 3.1. Every epimorphic image of a p-ideal is a p-ideal.

Proof. Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism and $I \in I^*(L)$. Suppose $f(x) \in f(I)$ and $f(t) \leq f(x)$. Then $f(t) = f(t) \land f(x) = f(t \land x) \in f(I)$. Next let $f(x), f(y) \in f(I)$. Then $f(x) \lor f(y) = f(x \lor y) \in f(I)$. Thus f(I) is an ideal. Again let $f(x) \in f(I)$. Then $f(x)^{**} = f(x^{**}) \in f(I)$ as I is a pideal, $x^{**} \in I$. Hence f(I) is a p-ideal of \mathbf{M} .

The set $I^*(L)$ forms a p-algebra which is due to [6]. The p-algebra is denoted by $I^*(\mathbf{L})$.

The following result is due to [6].

Theorem 3.2. $I^*(\mathbf{L}) = \langle I^*(\mathbf{L}); \land, \lor, *, (0], \mathbf{L} \rangle$ is a p-algebra, where

(a) $I \wedge J = I \cap J$; (b) $I \leq J = \{x \in L \mid x \leq (i^* \wedge j^*)^*$

for some $i \in I, j \in J$;

(c) $I^* = \{x \in L \mid x^{**} \land i = 0 \text{ for all } i \in I\}.$

Moreover, $I^*(\mathbf{L})$ is complemented if and only if each $I \in I^*(\mathbf{L})$ is a principal ideal.

Now we show that epimorphism preserves the \wedge and the \vee of p-ideals.

Lemma 3.3. If $f: \mathbf{L} \to \mathbf{M}$ is an epimorphism, then for any $I, J \in I^*(L)$

(a)
$$f(I \land J) = f(I) \land f(J)$$

(b) $f(I \lor J) = f(I) \lor f(J)$.

Proof. (a) Obvious.

(b) Let $x \in f(I \leq J)$. Then x = f(y) for some $y \in I \leq J$. This implies $y \leq (i^* \wedge j^*)^*$ for some $i \in I$ and $j \in J$. Hence

$$x \le f((i^* \land j^*)^*) = (f(i^*) \land f(j^*))^* = (f(i)^* \land f(j)^*)^*$$

for some $i \in I$ and $j \in J$. Thus $x \in f(I) \lor f(J)$ and hence $f(I \lor J) \subseteq f(I) \lor f(J)$. The reverse inclusion is trivial.

Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism. For any $A \subseteq M$, define

 $f^{-1}(A) = \{x \in L \mid f(x) \in A\}.$

Theorem 3.4. Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism. Then

(a) for any $J \in I(M)$, we have $f^{-1}(J) \in I(L)$;

(b) for any $J \in I^*(M)$, we have $f^{-1}(J) \in I^*(L)$.

Proof. (a) Let $J \in I(M)$. Since $f(0) = 0 \in J$, we have $f^{-1}(J)$ is non-empty. Let $x \in f^{-1}(J)$ and $t \in L$ with $t \leq x$. Then

$$f(t) = f(t \land x) = f(t) \land f(x) \le f(x) \in J.$$

This implies $t \in f^{-1}(J)$. Now let $x, y \in f^{-1}(J)$. Then $f(x), f(y) \in J$. This implies $f(x \lor y) = f(x) \lor f(y) \in J$. Thus, $x \lor y \in f^{-1}(J)$. Hence $f^{-1}(J)$ is an ideal.

(b) Let $J \in I^*(M)$. Then by (a) $f^{-1}(J)$ is an ideal. Now let $\in f^{-1}(J)$. Then $f(x) \in J$. Since J is p-ideal $(f(x))^{**} \in J$. This implies $f(x^{**}) \in J$. Hence $x^{**} \in f^{-1}(J)$. Thus $f^{-1}(J) \in I^*(L)$.

4. Induced Epimorphisms

Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism. Define $F: I^*(L) \to I^*(M)$ by F(I) = f(I) and $F^{-1}: I^*(M) \to I^*(L)$ by $F^{-1}(J) = f^{-1}(J)$.

The map F is called an *induced map* of f and the map F^{-1} is called a *reverse induced map* of f.

Theorem 4.1. If $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism, then the induced map $F: I^*(L) \to I^*(M)$ is a lattice epimorphism.

Proof. Let $I, J \in I^*(L)$. Then by Lemma 3.3,

$$F(I \cap J) = F(I) \cap F(J)$$

and

$$F(I \leq J) = F(I) \leq F(J).$$

Now let $J \in I^*(M)$. Since *f* is epimorphism, by the

Theorem 3.4, $F^{-1}(J) \in I^*(L)$ and $F(F^{-1}(J)) = f(f^{-1}(J)) = J$.

Let $f: \mathbf{L} \to \mathbf{M}$ be a homomorphism. The *kernel* of f is denoted by ker f and defined by

$$\ker f = \{ x \in L \mid f(x) = 0 \}.$$

Lemma 4.2. If $f: \mathbf{L} \to \mathbf{M}$ is a homomorphism, then ker f is a p-ideal.

Proof. Let $x, y \in \ker f$. Then f(x), f(y) = 0 and hence

$$f(x \lor y) = f(x) \lor f(y) = 0 \lor 0 = 0.$$

This implies $x \lor y \in \ker f$. Now let $x \in \ker f$ and $t \in L$ with $t \le x$. Then $f(t) \le f(x) = 0$ and hence f(t) = 0. So ker *f* is an ideal. Next let $x \in \ker f$. Then f(x) = 0. Now

 $f(x^{**}) = (f(x))^{**} = (0)^{**} = 0$. So $x^{**} \in \ker f$. Thus, ker f is a p-ideal.

The set of all p-ideals of a p-algebra **L** that contains ker *f* is denoted by $I_f^*(L)$. If ker $f = \{0\}$, then clearly, $I_f^*(L) = I^*(L)$.

Theorem 4.3. If $f: \mathbf{L} \to \mathbf{M}$ is an epimorphism, then $I_f^*(L) \cong I^*(M)$.

Proof. Clearly the map $F: I_f^*(L) \to I^*(M)$ defined above is a one-one lattice homomorphism. Let $J \in I^*(M)$. Then by Theorem 4.1, there exists $A \in I^*(L)$ such that J = F(A). Now let $x \in \ker f$. Then $f(x) = 0 \in J$. So $x \in A$, that is, ker $f \subseteq A$. Hence F is onto. \Box

Now we have the following important result.

Theorem 4.4. Let $f: \mathbf{L} \to \mathbf{M}$ be an epimorphism. Then for any $I \in I^*(L)$, we have

$$I \leq \ker f = F^{-1}F(I).$$

Proof. Let $x \in I \vee \ker f$. Then $x \leq (i^* \wedge j^*)^*$ for some $i \in I$ and $j \in \ker f$. This implies

$$f(x) \le f(i^* \land j^*)^* \\ = (f(i^* \land j^*))^* \\ = (f(i \lor j)^*)^* \\ = (f(i \lor j))^{**} \\ = (f(i) \lor f(j))^{**}$$

 $= (f(i))^{**}, \text{ since } f(j) = 0$ $= f(i^{**}) \in f(I) = F(I), \text{ as } I \text{ is a p-ideal. Hence } x \in F^{-1}F(I).$

Conversely, let $x \in F^{-1}F(I)$. Then f(x) = f(i) for some $i \in I$. This implies $f(x) \le f(i^{**}) = (f(i^{*}))^*$ and hence $f(x \wedge i^*) = f(x) \wedge f(i^*) = 0$. Thus $x \wedge i^* \in$ ker f. Now $x \le x^{**} \le (i^* \wedge x^*)^* = (i^* \wedge (i^* \wedge x^*)^*)^*$ implies $x \in I \ \forall \ \text{ker } f$.

Hence
$$I \vee \ker f = F^{-1}F(I)$$
.

If $f: \mathbf{L} \to \mathbf{M}$ is an epimorphism, then we have $F: I^*(\mathbf{L}) \to I^*(\mathbf{M})$ is a lattice epimorphism. Next result gives us an equivalence condition of F to be an epimorphism:

Theorem 4.5. If $f: \mathbf{L} \to \mathbf{M}$ is an epimorphism then the following are equivalent:

(a) $F: I^*(\mathbf{L}) \to I^*(\mathbf{M})$ is an epimorphism;

(b) ker f is a principal ideal.

Proof. (a) \Rightarrow (b). Let $I = \ker f$. Then by Theorem 4.4,

$$F(I^* \leq I) = \left(F\left(F^{-1}(F(I^*))\right)\right) = F(I^*) = f(I^*)$$
$$= f(I)^* = (0]^* = M.$$

Since *F* is an epimorphism, $I \leq I^* = L$. Hence

 I^* is the complement of I in $I^*(L)$. By Theorem 3.2, I is principal.

(b) \Rightarrow (a). By Theorem 4.1 we have *F* is a lattice epimorphism. To show that *F* is an epimorphism we only need to show that for every $I \in I^*(L)$, $F(I^*) = F(I)^*$. Let $x \in F(I^*)$. Then x = f(y) for some $y \in I^*$. So $y^{**} \land i = 0$ for all $i \in I$. This implies for all $i \in I$ we have

$$f(y^{**} \wedge i) = f(y^{**}) \wedge f(i) = f(y)^{**} \wedge f(i) = 0.$$

Thus $f(y) \in f(I)^* = F(I)^*$. So $F(I^*) \subseteq F(I)^*$.

Conversely, let $x \in F(I)^*$. Then $x^{**} \wedge f(i) = 0$ for all $i \in I$ This implies $x \wedge f(i) \le x^{**} \wedge f(i) = 0$. Now $x \in M$ implies that x = f(z) for some $z \in L$. So we get $f(z) \wedge f(i) = f(z \wedge i) = 0$. Thus $z \wedge i \in \ker f$. Since ker f is a principal ideal we have ker $f = (t^{**}]$ for some $t \in L$.

Now for all $i \in I$,

$$z \wedge i \leq t^{**}$$

$$\Rightarrow z \wedge i \wedge t^* = 0$$

$$\Rightarrow (z \wedge i \wedge t^*)^{**} = 0$$

$$\Rightarrow (z \wedge t^*)^{**} \wedge i^{**} = 0$$

$$\Rightarrow (z \wedge t^*)^{**} \wedge i = 0$$

$$\Rightarrow z \wedge t^* \in I^*.$$

Since $t \in \ker f$, we have

$$f(z \wedge t^*) = f(z) \wedge f(t^*) = f(z) \wedge (f(t))^*$$
$$= f(z) \wedge 1 = f(z) = x.$$

So $x \in F(I^*)$. Thus $F(I^*) = F(I)^*$. This completes the proof.

The following result is due to [6].

Theorem 4.6. Let **L** be a p-algebra. Then the following conditions are equivalent:

- (a) Every ideal is a p-ideal;
- (b) Every principal ideal is a p-ideal;
- (c) **L** is a Boolean algebra.

It is well known that the set $S(L) = \{x^{**} \mid x \in L\}$ of closed elements of a p-algebra **L** form a Boolean algebra $S(\mathbf{L}) = \langle S(L); \land, \sqcup, *, 0, 1 \rangle$ where for any $a, b \in S(L), a \sqcup b = (a^* \land b^*)^*$.

Finally we close the paper with the following result.

Theorem 4.7. For any p-algebra L, we have

$$I^*(\mathbf{L}) \cong I(S(\mathbf{L})).$$

Proof. Since S(L) is Boolean, by Theorem 4.6 we have $I^*(S(L)) = I(S(L))$. Let $g: \mathbf{L} \to S(\mathbf{L})$ be the Glivenko epimorphism defined by $g(x) = x^{**}$. Then by Theorem 4.3, $I_f^*(\mathbf{L}) \cong I^*(S(\mathbf{L}))$. Now since ker $g = \{0\}$, we have $I_f^*(\mathbf{L}) = I^*(\mathbf{L})$. Hence $I^*(\mathbf{L}) \cong I(S(\mathbf{L}))$.

References:

- Blyth, T.S., Ideals and Filters of Pseudocomplemented Semilattices, Proceedings of the Edinburgh Mathematical Society. 1980, 23; 301– 316.
- Cornish, W.H., Congruences on Distributive Pseudocomplemented Lattices, Bull. Austral. Math. Soc.. 1973, 82; 161–179.
- Grätzer, G., Lattice Theory. First Concepts and Distributive Lattices, W. H. Freeman. San Francisco, 1971.
- Katriňák, T. and Mederly, P., Construction of Palgebras, Algebra Universalis. 1983, 17; 288–316.
- Nag, C., Begum S. N. and Talukder M. R. Some Characterizations of Subclasses of P-algebras, Southeast Asian Bull. of Mathematics. 2017, 41; 535–546.
- Nag, C., Begum S. N., Talukder M. R. P-ideals and P-filters of a P-algebra, Southeast Asian Bull. of Mathematics. 2018, 42; 411–424.
- Nag, C., Begum S. N., Talukder M. R. Kernel Ideals and Cokernel Filters of a P-algebra, Acta Math. Hungar. 2018, 154(2); 279–288.