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Abstract

In this paper, we introduce an extension of the Dirac equation, very similar to Dirac oscillator, that gives
stationary localized wave packets as eigenstates of the equation. The extension to the Dirac equation is
achieved through the replacement of the momentum operator by a PT-symmetric generalized momentum
operator. In the 1D case, the solutions represent bound particles carrying spin having continuous energy
spectrum, where the envelope parameter defines the width of the packet without affecting the dispersion
relation of the original Dirac equation. In the 2D case, the solutions are localized wave packets and are
eigenstates of the third component of total angular momentum and involve Bessel functions of integral
order. In the 3D case, the solutions are localized spherical wave packets with definite total angular

momentum.
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1. Introduction

Ordinarily, in quantum mechanics, the free particle
solutions of the Dirac equation are plane waves with
infinite uncertainty in position. But, infinite wave trains
are not suitable for application. One, therefore, creates
wave packets by superposing many quantum eigenstates.
Wave packets are packets of wave function having finite
width in position and in momentum, and as such, suitable
for application. The aim of this paper is to present a
particular coupling of the momentum of a Dirac particle
with a position dependent dynamical operator which
creates eigenstates of the equation that are localized
stationary wave packets. This presents within the premise
of Dirac theory an alternative way to the conventional
creation of wave packets by superposition of many
eigenstates; the generalized momentum operator does the
job of wave packing. This process is similar to the
process of nonlinear coupling between Coulomb motion
of Rydberg electron and linearly polarized microwave
field that generate electronic wave packets as stationary
eigenstates of Schrodinger like equation [1-3].

Study of wave packets in the context of Dirac theory is
itself an important task because of their use in
nanophysics [4-7]. Moreover, relativistic wave packet
pose a challenge to theory as such, many authors
addressed this problem [8-11]. Localized stationary wave
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packets in orbit of atoms is an interesting topic being
studied for long (see, for example, [12] and the
references therein). Such stationary wave packets have
numerous potential applications [12], such as in
information  processing, in  cavity  quantum
electrodynamics and in precision spectroscopy etc. The
present study elevates the issue to the relativistic regime
where stationary wave localized packets are automatic
and stable products of relativistic Dirac equation. And as
such, our study opens up a new door to applications of
relativistic quantum states. Experimental realization of
such stationary wave packets can be anticipated as its
predecessor Dirac oscillator has already been realized in
experiments [13]. The present work is connected with the
Dirac oscillator in the way that the Hamiltonian we
employ here is derived from Dirac oscillator [14-16]. The
solutions to Dirac oscillator are harmonic oscillator
states; whereas, here we get qualitatively very similar
states, namely, wave packet states. We present the
equation and its properties in Section 2. In Section 3, we
present the solutions in (1+1) freedom and discuss some
of their properties. In Section 4, we present the solution
in (2+1) freedom assuming the mass to be zero. In
Section 5, we present the solution in (3+1) freedom.
Finally, in Section 6, we summarize our work.
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2. Dirac equation with PT-symmetric generalized
momentum

The equation that gives wave packets as eigenstates is
derived from Dirac oscillator [14] suppressing the Dirac
matrix 4 in the coupling operator, i.e. in the free particle
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Dirac equation we replace p by (p-iqf) to obtain the
following equation:

oY

[ca.(p—igr)+ Bmc Y = ihE (1)

where, q is the envelope parameter that determines the
width of the resulting wave packet, @, f are Dirac
matrices, p and 7 are respectively momentum and
coordinate of the fermion and c is the speed of light in
free space. This equation differs from Dirac oscillator
only in the matrix 8 which is present in the second factor
within parentheses of the first term on the left side of Eq.
(1) in case of Dirac oscillator. The operator (7 - iqr) is
PT-symmetric and can be easily checked. Under P
(parity) transformation: p — -p, 7 — -7 and under T
(time) reflection: p — -p, 7 — -7, i—-i. Moreover,
Eq. (1) can be generated from the Dirac Hamiltonian
H, by the similarity transformation SHOH'l with,

)

2

S =ex
p( 5

2

Hence, Eq. (1) changes the description of free Dirac
particles from unlocalized states to localized states. We

To create these wave packets, we write the original Dirac
Hamiltonian as H,, and consider the similarity
2

o

transformation SHOH'] with, § = exp(

2
The states transformto ' = exp( —9qr )LPO

3. Localized states in one dimension

We assume stationary solutions of Eq. (1) in the form

¥ =y (r)exp(—iEt/h)

Then, the equation becomes

proceed from the next section to study its solutions. We
reduce the equation in a way to be studied in (1+1)
freedom in the next section and find the solutions. In
passing, we discuss a little about why Eq. (1) is
important. Similarity transformation and the concept of
self-similarity are important foundations of fractals and
iterated function systems. The determinant of the
similarity transformation of a matrix is equal to the
determinant of the original matrix.

[BAB']=[B]4B"' =[BlA—]=[A]

In this work, we explore the similarity between a plane
wave moving in space as a solid particle and a wave
packet that is also moving in space as particle. No doubt,
the wave packet description is suitable and more worthy
for application.

where q is an envelope parameter. As is known, a dilation
corresponds to an expansion plus a translation. Further,
similarity transformation transform objects in space to
similar objects. But we get wave packets instead of free
wave trains. And wave packets are similar in nature to
free particle material points. Thus, we get an equivalent
description of Dirac solution from two Dirac equations,
where the new one is called modified Dirac equation.

[ca.(p—igr)+ fmc ly(r) = Ey(r) @)

Solutions to this equation in (1+1) freedom will be
worked out with the assumption that the motion of the
particle is along the z-direction with momentum p.

To realize this, we use o, in place of o and replace T
by z to obtain the governing equation as,

(ca.p—igea.z+ fmc* )y (z) = Ey(z) 3)

To construct the solution of this equation, first we note
that the operator on the left of this equation, the
Hamiltonian H, commutes with the operator of
z-component of spin, 22 ,1.e.,

y(z)=

Hence, our solution should be

[S.,H]=0.

simultaneous eigenstates of energy and spin. So, we
write the solution in the form

“4)
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Inserting this into Eq. (3), we find the following coupled

equations:
(cp—iqezyu, = (E—mc*)u, 5)

(cp —iqcz)u, = (E +mc’)u, (6)

—(cp —iqcz)u, = (E —mc’)u, (7

~(cp —igez)u, = (E +mc*)u, (8)

Following traditional methods, we first assume
u, =u, =0 and find from Egs. (5) and (6),

(cp—igcz)(cp —igez)u, = (E* —m’c*)u, ©)
and
(cp —igez)(cp —igez)u, = (E* —m’c*u, (10)
Therefore, we see that u#, and u; satisfy the same governing equations as Eq. (9) or (10). Thus, we need to
equation and thus, will have the same structure. We can solve only one equation, say, Eq. (9). We obtain from Eq.
now take #; = U3 = 0 and find for #, and 1, the same ©);
E2
2 . . 2 2 2.2
(p” —igpz —igzp —q 7z Ju, = (—=mc ), (11)

., 0
To solve Eq. (11), weuse p = —lha— and at the same
z

time make the coordinate z dimensionless by defining a

new coordinate z' = TLZ and transform
\f 2

2
ijtél +2Z%+22MI+K11/!1 =0 (12)
Z Z
where P R
We now consider a solution of the form |
u,(2) = ¢(2) eXp(—EZZ) (14)

Substituting this in Eq. (12), we obtain for ¢(z), the
governing equation,

2
d Zj +a’g=0 (15)
z
which immediately gives,
#(z) = expliaz) (16)

where
2 2 2
, E m-c

o

= 17
ghc®  qh (17

Hence, the full solution for u; is,

u,(z)= exp(i\/%az) exp(—%%zz) (18)
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which is a localized wave packet with the first factor width of the packet. The energy associated with the wave
giving the oscillation in space and the second factor packet is found as,
giving the envelope of the packet with q governing the

E= i\/azcth +m’ct =Bk +mPet = TE, (19)

where, [ = \/ga is the wave number. Surprisingly, & is independent of ¢ as can be seen from
h Eq. (17). Hence, the solution can be written more lucidly
as,
_ . lg ,
u,(z) = exp(ikz) exp(—agz ) (20)

We now turn our attention to the spinor (4). It has the two
independent forms for spin up and spin down as follows:

1
0 . lg ,
WV, (2)=N| _|exp(ikz)exp(——==z") (21)
1 2h
0
0
1 ; lg
Yo (2) =N\ |exp(ikz) exp(-——z") (22)
0 2h
1
The normalization factor can be calculated by demandil’lg by the envelope parameter q. These states have
J‘I’T‘sz =1 which gives continuous energy spectrum but they are not representing
— l g freely moving particles, rather the particles are bound. As
2\ 4rxh such, it is better to say that the particles are

quasiparticles. In Fig. (1) we draw the top component of
Eq. (21) for specific values of ¢ and k& and we see that
this is clearly a stationary localized wave packet.

The states (21)-(22) are each eigenstates of spin and
energy, and represent Gaussian wave packets with
minimum uncertainty product of position and
momentum. The widths of the packets are governed

P 4
0.0 ARy '"v[‘vxy“l”H"l“M" [l'l””]r”””,l”,l“,,“,A,, ........ -

Figure 1: The unnormalized rendering of the top component of Eq. (21) where k=1167 and ¢/2h=1. It is clear from the
Figure that the solutions to Eq. (2) are localized wave packets.
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4. Solution in two dimension for massless states

To solve Eq. (2) in 2D, we use m=0, for that gives the
theory an opportunity to be applied to systems like
graphene. And for that matter, we use in Eq. (2) 6

05

matrices in place of G matrices and assume G =(cy,0y),
P = (py Py) and T= (X, y)= (rcos, rsing). The master
equation can then be written as

0 cP
cP. 0 Ny, v,
where
P =(p, —igx)+i(p, ~iqy) (24)
P =(p, —igx)=i(p, —iqy) (25)
We transform Eq. (23) using polar coordinates as defined Lz being mi. Hence, we write the solution as
above and use the ansatz that the solutions are
eigenstates of J = [ +—c¢ with the eigenvalues of
‘ 7
‘P(r,(p)z(%J:e’m‘”[ 7) J 26)
v, e’g(r)
Using the standard procedure, we obtain the second order
differential equation satisfied by f{7) given by,
d’ 2 d
LI P f+Kf0 @7)
dr r dr W
E* 2q - . :
where, K, = =+t - Now, an exactly similar So, solving Eq. (27) only suffices for both the functions.
c’n’ Next, using an alternative coordinates as defined by and

equation is satisfied by g(r) with only m—mt1. » =Ly continuing with the use of r for 7/, we get from Eq. (27),
d'f f m’ 28
3 +(—+2r) HF =T K f =0 (28)
2 1o
where, K, = +2 . Now, we write f' () = v(r)e 2’
hqc’
i i ion:  dv ldv m’
and obtain for v(7) the following equation: LTI g (pz _ —2)V -0 (29)
dr= rdr r
E?
where p? = . Solution of this equation are Bessel
hqc A similar calculation yields for the functions g() the

functions of integral order and one may choose any one
from three types of Bessel functions of integral order.
Here we choose the first kind of Bessel functions J,

and find the solution of Eq. (29)as J (p\/gr) .
" /]

Y(r,p)=

=£ are the wave numbers. The
ch

where, k= p \/%

dispersion relation is thus,

E =+thke

Ne™e

corresponding Bessel functions Jm+1(p\/%’")~

Hence, we obtain the full solution as

i

Normalization constant N in Eq. (30) can be evaluated
using the results of Ref. [17]. We obtain

1qz

J,, (kr)

¢, (kr) ¢0)
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N 7Z'7"l hk®

(——)[1 (—) +1 m+1(

where, 1,(2) and [, ,,(z)are modified Bessel functions.
The functions Y(r,p) of Eq. (30) are eigenstates of
here the total angular momentum, and of energy. The
solutions in the present case are wave packets as is
evident from the structure of Eq. (30).

5. Solution in three dimension

We now solve Eq. (2) in full. To do so, we decompose

\P(;») as

Y(r)=

Using the standard representation of a through the Pauli
matrices g and using Eq. (32) in Eq. (2), we obtain the
two coupled equations given by

co.py, —iqco.ry,

cg.;l//l - ich'.;l//l

Based on the symmetries of the Dirac equation, we use

y]:ml (r):
)

]ml (r)—
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hk?

)]—1 €2))

Moreover, the solution (30) are similar in form as
those found for graphene quantum dots in [18] except the
appearance of the Gaussian factor in our case. Hence, we
can assume that our extension of the Dirac equation
affects only the extent of the wave function in space
without affecting the energy level spectrum.

w,(r)
=(E -mc*)y, (33)
=(E- me? W, (34)

the spin-angle functions [19] defined in two-component
form as

j* / 1
Jj+m+ Y 1
2]+2 j+ m+5

Jj+ mY 1
2j iy (35)
J—m SNy 1
2j /Wm+f
“Vaes e
J + J+ 5"y (36)
given by Egs. (35) and (36) are simultaneous

where Y’s are spherical harmonics with ; the total angular
momentum quantum number and m being the magnetic
quantum number associated withj. The functions

i) =u(r)y”",

and

() ==iv(r)y”",
2

where in Eq. (38), the factor —i is included for later
convenience. Now, we can write [19]

op=on-inl+LizI)
or r

eigenfunctions of L2, S2, J2, J,. Then, using standard
procedure [19], we write

(37

(3%)

(39)
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where L is the orbital angular momentum operator.
Now,

(CL)y/" =Ky" (40)
where x=—(A+1) for Z=j+% and

Kk=(A-1) for l=j—% where ﬂ=j+%. It

is to be noted that [19]

Jm

o =—
y] J+7 yl:jil (41)
2 2
Inserting Eq. (37)-(41) in Eq. (33) and rearranging, we
obtain
d A+1
(— —t= r)v(r) ( )u(r) (42)
Similarly, we obtain from Eq. (34),
d 1-1 E +mc’
(———+= r)u(r) =—(——)v(r) (43)
drr h hc
We can reduce Eq. (42) and (43) into uncoupled form by following equations (where we keep on using » which is
using simple algebra. We do this and use actually »'):

the dimensionless variable p'= \/gr and find the
/]

2
du 2+(—+2 ) +(r’ l(/l )) +Ku=0 (44)
dr r
2
d—:+(2+2r)ﬂ+(72—l(/lz+1))v+K4v:0 (45)
dr r dr r
2 2 4
where K, = Eh_—mzc + 3 . Using the assumption
qc
u(r) = §()exp(-5 1) (46)
and using this in Eq. (44), we obtain
d’§ 2dé /Wv 1)
—t+——+ 0 47
el (e a (47)
Similarly, using {
v(r) = x(r) eXp(—Erz) (48)
we obtain from Eq. (45)
d’y 2dy ., A(A+])
+E—L 4 (- =0 49
ar* v dr (v P )z (49)
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» FE P —mic!
hgc®
Solutions of Eq. (47) are spherical Bessel functions
Ju(yr) and n,.(yr),where A'=A1-1.

where in Egs. (47) and (49), y
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Solutions of Eq. (49) are also spherical Bessel functions,
namely j,(yr) and n,(yr). Hence, we can write
explicitly, using only regular solutions and restoring the

original variable 7,

~ . 1 m
Vi () = Njpo (k) exp(=—2 )y (50)
and
- . 1 m
wz(r)=—1Nh(kr>exp<—5%r2)y; (51)
where
E? =Wkt + m*c? (52)
o 2 2 4
fo g NE —mc (53)
fic

Evidently, £ is independent of ¢, the envelope parameter.
Next, we normalize the wavefunction (32) with ¥/; and

V¥, given by Egs. (50) and (51)

3
P 2
N2 (ﬁ] ﬁexp(_ﬂ

hk? hk?
q]{f*(ﬂ*ﬁ(aﬂﬂ e

where N is the normalization constant. Using results of
Ref. [17], we obtain

q 4 2
where f (z) = /21 I | (z) are the modified spherical completeness, we now write explicitly the spinor for
z n+—
2
Bessel function of the first kind. For j=— and m= é , which is
2
Ji(kr)Y;,
0
3 lg , 1
22 4 ..
b4 —Nexp( 2hr j Uz(kr)\/;)’21 (55)
. 4
1, (ki’)\EYzz

The solutions found, namely Eq. (32) with ¥, and
¥, given by Egs. (50) and (51) with the specific
example given by Eq. (55) are wave packets in three
dimensions carrying total angular momentum and its
z-component given by the quantum numbers j and m

as conserved quantities. Hence, we get here stationary
spherical Bessel wave packets carrying angular
momentum. Thus, we have found a complete picture of
the solutions of Eq. (2) which is an extension of the
Dirac equation very similar to Dirac oscillator.
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6. Summary and Conclusion

In this paper, we have presented an extension of the
Dirac equation, very similar to the Dirac oscillator, given
by Eq. (1). We have solved the (1+1) case of the equation
and the solutions are given by Egs. (21)-(22). The
solutions are spinor wave packets carrying definite spin
(1?72 or-1?2) and continuous energy spectrum. They
represent bound quasiparticles although the spectrum is
continuous. The states are of minimum position-
momentum uncertainty product, the width in position
and momentum space are determined by the envelope
parameter q. This parameter entering Eq. (1) via the
operator (-iqr ?) does not affect the dispersion relation,
given by Eq. (19), but only packs the otherwise
sinusoidal waves into a Gaussian envelope. This is why
we call Eq. (1) the "wave packing Dirac equation. The
solutions can also be looked at as representing freely
moving particles, but in that case they suffer dispersion
owing to the nonlinear dispersion relation (19).
Extension of the system to the massless case is easy and
the solutions remain same. Finally, in section 5, we have
solved the equation in full, using spherical polar
coordinates and spin-angle functions. The same envelope
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