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Abstract

The estimation task of formant frequencies is challenging for some spectral estimation issues. However,
it is significant in the female or child speech-processing arena. This paper proposes a method for
calculating the formant frequencies of high-pitched speech employing third-order group delay moment
(GDM) of cepstrum. The GDM is a time domain equivalent signal estimated using the inverse discrete
Fourier transform (DFT) of group delay spectrum (GDS). The GDS is calculated from the cepstrum. The
stabilized spectral root cepstrum (SRC) is used in place of log-based cepstrum to obtain better control of
the noisy speech spectrum. The resultant GDM becomes a vocal tract-dominated signal with noise-
robust as well. The efficiency of the proposed method has been shown by calculating the formant values
of some synthetic vowels against different fundamental frequency variations from 100 Hz to 400 Hz.
Additionally, standard F2-F1 plots obtained from the natural vowel sounds of male and female speakers
are demonstrated. An utterance from the TIMIT corpus has been utilized to plot the formant contours on
the respective spectrogram. The results are likened to two related sophisticated methods. The proposed
technique outperforms both approaches, especially when high-pitched speaking in the presence of
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ambient noise.
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1. Introduction

A signal utterance is emanated by the convolution of
the originating signal passing through the glottis with
the vocal tract filter. Formant estimation is essential for
some practical situations such as speech recognition,
synthesis, speech coding, voicing detection, dysphonic
severity detection, etc. Recently deep learning
techniques improve the accuracy of these tasks.
However, such type of methods pays more
computational complexity. Thus for light-weight
applications traditional formant extraction task is still
demandable.

The linear predictive coding (LPC) methods [1-2] are
extensively used for source-filter separation. However,
the accuracy relies on the appropriate model order
selection. The cepstrum method [3-4] has a long history
to achieve successful segregation of the filter from the
source. Most of these methods consider a noise-free
environment. It was found that the SRC method is more
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effective in a noisy case than the log-based cepstrum.
Naturally, different noises corrupt the speech source.
The methods described in [5-7] consider the noisy
environment for speech analysis. However, these
methods do not have special analyses for high-pitched
cases. For high-pitched speech, original formant peaks
are distorted or masked by the nearest harmonics, even
in the case of clean speech. So, the model-based or
peak-picking method alone is not perfect for high-
pitched speech analysis. Rahman and Shimamura [8]
identified the aliasing effect in high-pitched speech as a
barrier. In my previous research [9], the high-resolution
GDS [10] is estimated in place of the magnitude
spectrum as an excellent tool to improve the accuracy
of the high-pitched speech analysis. The higher-order
GDS as a higher-order statistical (HOS) tool has an
attractive property [11] to suppress the Gaussian noise.
The SRC [12] method is used for deconvolution to gain
control when estimating the spectrum. Firstly, the SRC
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is stabilized yielding reduced noise effect. After
truncating it by the liftering window, the inverse SRC is
applied to convert it back to the time domain equivalent
signal. Then the third-order GDM signal is calculated,
which reduces the noise noticeably.

The accuracy of the proposed method has been shown
by comparing it with the two state-of-the-art methods:
the modified magnitude spectrum (MMS) [13] method
and the WORLD formant estimator. In the MMS
method, the magnitude spectrum is modified by the
GDS. The Cheap Trick process of [14], described in the
WORLD vocoder [15], provides a cepstrally smoothed
spectral envelope. The auto-regressive (AR) coefficients
are calculated from this spectrum for formant estimation,
which is referred to as a WORLD formant estimator. The
analysis conducted by choosing different analysis
parameters showed that the proposed method
outperforms the above two techniques in case of noisy
and high-pitched utterances.
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Fig. 1: A speech spectrum of a synthetic vowel /a/ com-
pared with the 'true' spectrum (a) at FO=100 Hz and (b)
at F0=250 Hz.

2. Problem Analysis

A voiced speech segment is x(n). The DFT of x(n) can
be expressed as
N_1

x(k) = %Z x(n)e T (0

n-0

where N is the number of DFT points and 0< k< N-1.
2.1 Issues of High-Pitched Spectral Estimation

According to Eq. (1), more harmonics exist in low-
pitched speech, and its spectrum conforms with the
‘true’ spectrum, shown in Figure 1 (a), where the ‘true’
spectrum means the spectrum calculated from the vocal
tract impulse response. The pitch period decreases for

high-pitched speech. All harmonics are congested to
the narrow region yielding overlapping of harmonics of
speech components. The resulting spectrum shows a
smaller number of wider harmonics. Therefore, the
information on some components is lost in the high-
pitched speech spectrum. The harmonics, which may
conform with the true resonance peaks are masked or
distorted by the nearest harmonics, as observed in
Figure 1 (b). Thus, analyzing high-pitched speech
becomes a challenging task.

2.2 Group Delay Spectrum
An alternative representation of the Eq. (1) is
X(k) = |X(k)|e?X*®  where

X; (k)
Xp(k)

Pxk) = arctan

The |X(k)| denotes the magnitude spectrum, whereas
@x(k) is the phase spectrum, and Xgp(k) and X;(k)
indicate the real and imaginary parts of the spectrum
X(k). The GDS is the other delegation of the phase
spectrum. It is calculated using any one of the
followings

(k) = - w, or alternatively )
__ XRM)X' ()X (R)X (k)
) = X (012 ’

where ' indicates the derivative with respect to k. The
primary concern about the GDS is its spikiness.
Bozkurt [16] identified the cause of it as the lack of
synchronization window with the glottal closure
instant. Along with this, the GDS estimation besets lots
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Fig. 2: The pole-zero plots and the third-order GD
spectrum of a noisy synthetic vowel /a/ at Pink noise,
SNR=15 are compared (a) at r =1 and (b) at r = 0.95.
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of issues. These are discussed in my previous research
[9]. Unfortunately, this GDS and the higher-order GDS
become spiky for noisy speech, which will become
discernible from the next subsection.
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Fig. 3: The LP spectrum, computed using the proposed
method, on a noisy vowel /a/ (Pink noise, SNR=15), at
different pitch values are compared with the 'true'
spectrum, (a) atr =1 and (b) at r = 0.95.

2.3 Stability Violation in Noisy Speech

I calculated the higher-order GDS from the time-
domain equivalent signal obtained from the spectral
root (real) cepstrum. There are no issues when
computing the GDS from such a causal and stable
clean signal. When the signal becomes noisy, the
roots near the unit circle produce spurious peaks on
that spectrum, violating the system’s stability. The
third-order GDS, named group delay (GD) bi-
spectrum computed from such a signal, fails to
emphasize the formant peaks, as illustrated in Figure
2 (a). Bozkurt et al. [16] proved that the roots away
from the unit circle emphasize the formant peaks in
the GDS, which is shown in Figure 2 (b). The AR
coefficients estimated at pole/zero radii » = 1 provide
confusing formant information. Again, » = 0.95
conforms to the original formant values, as shown in
Figure 3.

15

3. Proposed Method

For successful deconvolution, I employed the
stabilized spectral root cepstrum after adjusting the
appropriate y value. A GD bi-spectrum is then
calculated from the inverse spectral root cepstrum for
noise reduction. The overall method is illustrated
briefly in the block diagram, shown in Figure 4. The
subsections describe all of

next few these

relevancies.

3.1 Spectral Root Cepstrum

The convolution of impulse train with the vocal tract
impulse response forms the speech signal x(n).
Consider a revertible system such that,

X(k) = X7 (k).

Here X(k) is the DFT of x(n). For real spectral root
cepstrum

=z

- jz—nkn
|X (k)Y e N7, 3)
0

=~

x(n) =

&
Il

where 0 <n <N —1 and X(n) in Eq. (3) indicates
the spectral root cepstrum. That means the spectral
root cepstrum method converts the convolutional
vector space to another vector space. Thus, the filter
information can be easily separated from the source
by truncating it by a liftering window.

3.2 Stabilization

The stabilized spectral root cepstrum plays a
significant role when emphasizing the vocal tract
impulse response. The system represented by Eq. (3)
is stabilized by shifting the roots inside the unit circle
(r<1), yielding the stabilized signal X;(n) as

Xs(n) =X(n)(r)",

where 0.5 < r < I. Selecting the lower value of r,
near 0.5, diminishes the spectral peaks along with the
possible formant peaks. Again, an unstabilized signal
impacts the overall system performance, as discussed
in the previous section.

3.3 Choice of Liftering Window for Truncating

A fixed-sized liftering window would be the simplest
form of truncation. Since the underlying system is
unpredictable as male or female speech, complexity
arises to define such an independent cepstral
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window. Thus the window size varies according to
the pitch values. From the study of [17], I have used
0.5T as a length of cepstral window w(n) for low-
pitched speech.

1, if 0<n<0.5T
0, otherwise.

w(n) = {

Here, T is the signal period. After truncating, the
signal becomes as
Xc(n) = £;(n)w(n).

The high-pitched speech shows less information
within 0<n<0.5T. So, it is convenient to select the

window length of 0.7 T as the cepstral window for the
high-pitched speech.

3.4 Inverse Spectral Root Cepstrum

Application of inverse SRC operation converts the
truncated signal X.(n) to X;(n) as

15, L oam
%) =5 D[RO/, %)
k=0

where X, (k) is the DFT of £.(n). The signal £,(n) is
time domain equivalent signal.
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Fig. 5: The y value impact on the synthetic speech. The result is shown by estimating the average of first three
formants using the proposed method (a) at y = 0.01, (b) at y = 0.1, (¢c) at y = 0.25, (d) at y = 0.5, and (e) at y =
0.75. The first column represents the results in the case of clean speech. The second, third, and fourth columns
represent the results of noisy speech added with the Pink, Babble, and Car noises, respectively, at SNR = 10 dB.
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3.5 Group Delay Moment
The GDS can be calculated effectively using the

minimum phase signal, which avoids the related
issues of GDS estimation [9]. Stability is ensured in
X;(n) by shifting the roots inside the unit circle. The
truncated signal X.(n) is a causal signal. Using Eq.
(4), the calculated signal X;(n), is a minimum phase
signal appropriate for the improved GDS calculation.
Using Eq. (2), the improved GDS is calculated as
200 = — d{arg(Xt(k))}.
dk

The X, (k) is the DFT of x,(n). From the study of
[18], the negative values contravene the system’s
causality

Thus, the GDS is half-wave rectified as follows
7, (k) = {Tt(k)' if t.(k) >0

0, Otherwise.
However, the above GDS is not noise-robust as
expected. So, I used the GD bi-spectrum, which is
calculated by

T3.(k) = 72 (k).
Application of the inverse DFT converts 75.(k) to the

third-order GDM as
N-1

1 jz—nkn
Xg (W) =1 ) T3 (k) /N
k=0
The signal x3,(n) reflects the vocal tract impulse

response with a reduced noise effect.
3.6 Formants Estimation

The signal x34(n) is the third-order GDM, where the
noise effect is minimized. Then the auto-regressive
(AR) coefficients are calculated from it. Employing the
Levinson—Durbin’s algorithm [19] the said coefficients
are estimated. Using the root-solving method, the
formant frequencies are estimated. This method is
dependent on appropriate model order selection.

Table 1 Formant frequencies to synthesize the vowels

Vowels F1 F2 F3 F4 F5

/a/ 813 |1313 |2688 |3438 (4438
/i/ 375 |2188 [2938 |3438 (4438
Ju/ 375 |1063 [2188 |3438 (4438
/e/ 438 1863 (2688 |3438 (4438
/o/ 438 1063 (2688 |3438 (4438
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4. Experimental Analysis and Discussion

The experiments are conducted by estimating the
formant frequencies of some synthetic vowels and
some natural vowels. A few utterances of male and
female speakers from the TIMIT [20] database is also
tested to show efficiency. The formant values are
calculated for each speech segment using the following
equation

N
L1
F=y )P ©
n=1

th

where F, is the formant frequency of n” windowed

speech segment.

4.1 Experimental Setups

The Liljancrants-Fant glottal model [21] is an effective
tool for reproducing the signal source. For
experimenting the synthetic speech, this model is used

to simulate a signal source. Five formant frequencies
from Table 1 are used to synthesize the five vowels,
where a 10 kHz sampling frequency is employed. The
speech signal is segmented using a Hamming window
of 20 ms and analyzed by a 1 ms frame shift. A first-
order differentiator 1 —z~! is applied as a pre-
emphasis filter to each speech segment. The five
formants’ bandwidths are 60, 100, 120, 175, and 281
Hz settled. The DFT size is fixed to 1024 with the
analysis order 12. Then the formant values are
calculated for each speech frame using Eq. (5). The
formant estimation error of each vowel in a percentage
is calculated by

5 ~
1 |Fj = Fyl
EF, =(=) B2 _"Ul),q
L (52 o)
i=

where F;; indicates the i formant frequency of the ;j”
vowel from table 1 and F; ; is the calculated value. The

average errors (%) of the first three formants are
estimated using the following formula as

4.2 Adjusting the y Value

Utilization of the y value on |X (k)| does not change
the values of spectral peaks or pitch harmonics. The
spectral root cepstrum method is consistent with the

1
cepstrum method owing to the ()" and ()*” power
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function is taken in place of the logarithmic and
exponential function, respectively. Since there is no
theoretical idea about the choice of y, I have to depend
on empirical observations. According to the study from
[12], it should be 0<Y <1 for the real cepstrum. The
study about the y value impact on formant estimation
for both clean and noisy speech is shown in Figure 5.
My analysis shows that a lower y value is more
reasonable for clean speech. However, this value does
not apply to noisy speech. A higher y value for
the noisy speech shows better results for the source
affected by the Pink, Babble, and Car noises.

4.3. Clean Synthetic Speech Analysis

The result of clean synthetic speech analysis is shown
in Figure 6. The proposed method exhibits a reliable
outcome for all three formants, even in a high-pitched
region. Although the WORLD formant estimator
shows improved accuracy in the low-pitched regions, it
fails to enhance the accuracy of high-pitched locations.

4.4. Noisy Synthetic Speech Analysis

When the noises such as the Babble and Car noises at
SNR=10, 20, and 30 dB corrupt the signal source, the
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Fig. 6: The formant estimation errors (%) of five
synthetic calculated at different
fundamental frequencies up to 400 Hz for the (a) 1st
formant, (b) 2nd formant, and (c) average of the first
three formants.
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Fig. 7: The average error (%) of the first three formants, Eaye of a noisy (first and second column show the Babble
and Car noise effect, respectively) synthetic speech signal with (a) SNR=10 dB, (b) SNR=20 dB, and (c) SNR=30 dB
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Fig. 8: F2 - F1 plot of the vowel sound /a/ pronounced by (a) a male speaker, (b) a female speaker and the vowel
sound /o/ spoken by (c) a male speaker, (d) a female speaker. The first column represents the results in the case of
clean speech. The second, third, and fourth columns represent the results of noisy speech added with Pink, Babble,

and Car noise, respectively, at SNR =20 dB.
proposed method outperforms the other two
techniques. The noisy synthetic speech analysis result
is shown by averaging the (%) errors of the first three
formants in Figure 7. Both pitch estimation accuracy
and the log function used to cepstrally smooth the
spectrum influence the WORLD formant estimator.
The MMS method utilizes the magnitude spectrum. So,
these methods are inherently noise-sensitive.

4.5. Real Speech Analysis

For natural speech analysis, I used some isolated male
and female vowels. An utterance of a high-pitched
female speaker from the TIMIT database is taken for
analysis.

4.5.1. Using Isolated Vowels

The vowels /a/ and /o/ uttered by male and female
speakers are used for analysis. All preconditions are

fixed to the same as the synthetic speech analysis. The
technique DIO [22] of the WORLD vocoder is used to
obtain the pitch values, which is employed for low-time-
gating. The analysis was conducted on different window
positions after shifting by 5 ms. The F2-F1 plot [23]
represents the performance of the proposed method. In
the case of clean vowel sound, the proposed technique
shows the F2-F1 values more concentrated than the
MMS and WORLD formant estimator as illustrated in
Figure 8 (first column). In the noisy case, the proposed
method shows higher accuracy. The MMS and the
WORLD formant estimator can't tolerate the noise effect,
which is evident in Figure 8 (second, third, and fourth
column).

The measurement of standard deviation is shown in
Table 2, where bold-marked numbers show the best
result in that category. After investigating the
measurements of distribution, it is evident that the
proposed method shows more concentrated values than
other methods both in clean and noisy cases.
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Table 2. Standard deviation measurements of different vowels spoken by male and female speakers.

Methods Male Vowel /a/ | Female Vowel /a/ | Male Vowel /o/ | Female Vowel /o/
F1 F2 F1 F2 F1 F2 F1 F2
Clean vowels | Proposed | 14 15 38 76 20 30 16 12
MMS 12 16 53 73 19 30 24 10
WORLD | 17 15 45 54 22 30 42 14
Noisy (Babble, | Proposed | 15 17 33 46 18 49 14 13
SNR=20 dB) MMS 96 173 45 51 40 75 23 75
vowels WORLD | 34 90 45 54 17 37 43 12

Clean Speech
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Noisy Speech
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Fig. 9: The spectrogram estimated from a TIMIT utterance of a female speaker, "Don't ask me to carry an oily rag
like that". First three formant contours are plotted on the spectrogram using (a) the proposed method, (b) the MMS

method, and (c) the WORLD formant estimator.

4.5.2. Using Real Utterance

After estimating the formant values of a clean
utterance, three formant contours are plotted on the
spectrogram of the utterance as shown in Figure 9 (left
column). The formant contours reliably match the
selected region of spectrogram plot by the proposed
method yielding higher accuracy than the other two
methods.

To test the result of noisy utterance (Babble noise at
SNR=20 dB),
plotted on the spectrogram as shown in Figure 9 (right
column). The formant contours are more precise and
reliable in the selected regions by the proposed method,
whereas a few deviations are manifested in the MMS
and the WORLD method. Although some spurious
values are observed in the higher formants of all
techniques, the proposed method improves the
accuracy of formant values in the selected regions.

the estimated formant contours are

6. Conclusion

The proposed technique achieves a noise-robust SRC
from the speech signal, choosing the appropriate
analysis parameters y and r. To minimize the noise
effect further, third-order GDS is calculated from it.
The GDM signal estimated from GDS becomes a
vocal-tract-dominated signal and overcomes most high-
pitched related issues. Experimental analyses also
prove the proposed method as a robust formant

estimator for high-pitched noisy speech.

Acknowledgment

I acknowledge the ICT division of Bangladesh
government for supporting such a research.



SUST J Sci Tech, Vol 33(1) 2023, 13-21

References:

1.

10.

11.

Atal B. S. and Hanauer S. L. (1971). "Speech
analysis and synthesis by linear prediction of the
speech wave", J. Acoust. Soc. Am., 50(2B), 637-
655. https://doi.org/10.1121/1.1912679.

Makhoul J. (1975). "Linear prediction: A tutorial
review", Proceedings of the IEEE, 63(4), 561-580.

Noll A. M. (1967)."Cepstrum pitch determination",
J. Acoust. Soc. Am., 41(2), 293-309. https://doi.
org/10.1121/1.1910339.

Oppenheim A. V., R. W. Shafer R. W., and
Stockham J. G. (1968). "Nonlinear filtering of
multiplied and convolved signals," IEEE trans.
audio electroacoustic. 16(3), 437-466.

Kaneko T. and Shimamura T. (2014). "Noise-
reduced complex LPC analysis for formant
estimation of noisy speech", Int. J. Electron. Elect.
Eng., 2 (2), 90-94.

Gldser C., Heckmann M., Joublin F. and Goerick
C. (2008). "Auditory-based formant estimation in
noise using a probabilistic framework", Ninth
Annu. Conf. Int. Speech Commun. Assoc.

Jameel A. S. M. M., Fattah S. A., Goswami R. and
Zhu W. and Ahmad M. O. (2016). "Noise robust
formant frequency estimation method based on
spectral model of repeated autocorrelation of
speech", IEEE/ACM Trans. Audio, Speech,
Language Process., 25 (6), 1357-1370.
https://doi.org/10.1109/TASLP.2016.2625423.

Rahman M. S. and Shimamura T. (2007). "Linear
prediction using refined autocorrelation function",
EURASIP J. Audio Speech Music Process., 1,
1-9. https://doi.org/10.1155/2007/45962.

Chowdhury H. A. and Rahman M. S. (2020).
"Speech Signal Analysis in Phase Domain."
Journal of Computer Science. Aug, 16(8), 1115-
1127. https://doi.org/10.3844/jcssp.2020.1115.1127.

Murthy H. A. and Yegnanarayana B. (2011).
"Group delay functions and its applications in
speech technology", Sadhana, 36 (5), 745-782.

Mendel J. M. (1991). "Tutorial on higher order
statistics (spectra) in signal processing and system
theory: Theoretical results and some applications",
Proc. IEEE., 79, 278-305.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

21

Jae and Lim S. (1979). "Spectral root
homomorphic deconvolution system" IEEE Trans
Audio Speech Lang Process., 27 (3), 223-233.

Chowdhury H. A. and Rahman M. S. (2021).
"Formant -estimation from speech signal using
the magnitude spectrum modified with group
delay spectrum". Acoust. sci. & tech., 42 (2), 93-
102. https://doi.org /10.1250/ast.42.93.

Morise M. (2015). "CheapTrick, a spectral
envelope estimator for high-quality speech
synthesis", Speech Commun., 67, 1-7.

https://doi.org/10.1016/j.specom.2014.09.003.

. Morise M., F. Yokomori and Ozawa, K., (2016).

"WORLD: a vocoder-based high-quality speech
synthesis system for real-time applications", IEICE
Transactions on Information and Systems,
99,1877-1884. https://doi.org/10.1587/transinf.20
15EDP7457.

Bozkurt B., Couvreur L. (2007). and Dutoit T.,
"Chirp group delay analysis of speech signals",
Speech communication, 49 (3), 159-176.
https://doi.org/ 10.1016/j.specom.2006.12.004.

Rahman M. S. and Shimamura T. (2005). "Formant
frequency estimation of high-pitched speech by
homomorphic prediction", Acoust. sci. & tech., 26
(6), 502-510. https://doi.org/10.1250/ast.26.502.

Loweimi E. (2018). "Robust phase-based speech
signal processing from source filter separation to
model based robust ASR.", Ph.D. dissertation,
University of Sheffield.

Durbin J. (1960). "The fitting of time series
models", Rev. Inst. Int. Stat., 233-243.

Zue V., S. Seneff and Glass J. (1990). "Speech
database development at MIT: TIMIT and
beyond", Speech Commun., 9 (4), 351-356.

Fant G., Liljencrants J., and Lin Q.-g. (1985)."A four
-parameter model of glottal flow", STLQPSR., 4, 1-13.

Morise M., Kawahara H., and Katayose H. (2009).
"Fast and reliable fO estimation method based on
the period extraction of vocal fold vibration of
singing voice and speech", in Proc. AES 35th
International Conference, CD-ROM Proceedings.

Watt D. and Fabricius A. (2002). "Evaluation of a
technique for improving the mapping of multiple
speaker's vowel spaces in the Fl~ F2 plane",
LWPLP., 9(9), 159-173.



